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Improved monitoring of forest biomass and biomass change is needed to quantify natural and anthropogenic ef-
fects on the terrestrial carbon cycle. Landsat's temporal and spatial coverage, moderate spatial resolution, and
long history of earth observations provide a unique opportunity for characterizing vegetation changes across
large areas and long time scales. However, like with other multi-spectral passive optical sensors, Landsat's rela-
tionship of single-date reflectance with forest biomass diminishes under high leaf area and complex canopy con-
ditions. Because the condition of a forest stand at any point in time is largely determined by its disturbance and
recovery history, we conceived a method that enhances Landsat's spectral relationships with biomass by includ-
ing information on vegetation trends prior to the date for which estimates are desired. With recently developed
algorithms that characterize trends in disturbance (e.g. year of onset, duration, and magnitude) and post-
disturbance regrowth, it should now be possible to realize improved Landsat-basedmapping of current biomass
across large regions. Moreover, given thatwe now have 40 years of Landsat data, it should also be possible to use
this approach to map historic biomass densities.
In this study, we developed regression tree models to predict current forest aboveground biomass (AGB) for a
mixed-conifer region in eastern Oregon (USA) using Landsat-based disturbance and recovery (DR) metrics.
We employed the trajectory-fitting algorithm LandTrendr to characterize DR trends from yearly Landsat time
series between 1972 and 2010. The most important DR predictors of AGB were associated with magnitude of
disturbance, post-disturbance condition and post-disturbance recovery, whereas time since disturbance and
pre-disturbance trends showed only weak correlations with AGB. Including DR metrics substantially improved
predictions of AGB (RMSE = 30.3 Mg ha−1, 27%) compared to models based on only single-date reflectance
(RMSE = 39.6 Mg ha−1, 35%). To determine the number of years required to adequately capture the effect of
DR on AGB, we explored the relationship between time-series length and model prediction accuracy. Prediction
accuracy increased exponentially with increasing number of years across the entire observation period, suggest-
ing that in this forest region the longer the historic record of disturbance and recoverymetrics themore accurate
the mapping of AGB. However, time series lengths of between 10 and 20 years were adequate to significantly
improve model predictions, and lengths of as little as 5 years still had a meaningful impact. To test the concept
of historic biomass prediction, we applied our model to Landsat time series from 1972–1993 and estimated
AGB biomass change between 1993 and 2007. Our estimates compared well with historic inventory data, dem-
onstrating that long-term Landsat observations of DR processes can aid in monitoring AGB and AGB change.
Instead of directly linking Landsat data with the limited amount of available field-based AGB data, in this study
we used the field data to map AGB with airborne lidar and then sampled the lidar data for model training and
error assessment. By using lidar data to build and test our prediction model, this study illustrates that lidar
data have great value for scaling between field measurements and Landsat data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Improvedmonitoring of forest biomass is required to understand the
role of forest ecosystems in the global climate and to implement national

and internationalmitigation strategies that reduce greenhouse gas emis-
sions (Aber et al., 2001; Bonan, 2008; Houghton, 2005). Current observa-
tions of the land–atmosphere C-flux based on measurements via eddy
covariance techniques (Baldocchi, 2003) and field inventories (Goodale
et al., 2002) are too sparse in time and space to allow inferences of terres-
trial carbon sources and sinks with sufficient accuracy (Denman et al.,
2007; Houghton, Hall, & Goetz, 2009). Consequently, the value of remote
sensing data for estimating forest aboveground biomass (AGB) is high.
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Themost promising strategies for improving forest carbon estimates
with remote sensing data are to combine themwith ecosystem process
models. For example, studies have combined ecosystem processmodels
with maps of disturbance history and age from Landsat time series
(Cohen, Harmon, Wallin, & Fiorella, 1996; Masek & Collatz, 2006), and
with satellite-based estimates of FPAR (fraction of photosynthetic active
radiation) (Coops & Waring, 2001; Smith, Knorr, Widlowski, Pinty, &
Gobron, 2008). Ecosystem models are valuable because they can pro-
vide a detailed simulation of ecophysiological processes, including
those below ground, and can be run in prognostic mode, e.g. to analyze
ecosystem feedbacks to future climate scenarios. However, these
models also require large, detailed datasets for parameterization, and
independent validation is limited. In addition, over decadal time scales,
carbonfluxes are largely drivenby changes in tree biomass, successional
change in forest composition, and disturbance events; processes that
are not well represented by current ecosystem models (Urbanski
et al., 2007). Remote sensing has the potential to provide much of the
detailed information that such models require.

Lidar (light detection and ranging) is currently the only sensor
type whose signal does not saturate in high biomass forests
(e.g. 1200 Mg ha−1, Lefsky, Cohen, Parker, & Harding, 2002); thus lidar
data are ideal for mapping AGB. Lidar measures the three-dimensional
distribution of tree heights and foliage (Drake et al., 2002; Lefsky et al.,
1999) resulting in accurate estimates of forest biomass across a broad
range of forest types and biomes (Dubayah et al., 2010; Lefsky et al.,
2002). Lidar systems are currently available either as wall-to-wall scan-
ners (most operational airborne systems) or as discrete samplers with
ground footprints between 10 and ~65 m in diameter (Abshire et al.,
2005; Blair, Rabine, & Hofton, 1999; Nelson, Krabill, & Tonelli, 1988). Sev-
eral studies have nowdemonstrated how to integrate large footprint lidar
samplers and satellite imagery to map forest biomass over temperate
(Lefsky, Turner, Guzy, & Cohen, 2005), boreal (Boudreau et al., 2008),
and tropical forests (Baccini et al., 2012; Helmer, Lefsky, & Roberts,
2009; Saatchi et al., 2011). Estimating biomass with airborne laser scan-
ning data is often more accurate (Zolkos, Goetz, & Dubayah, 2013), but
the high acquisition costs and data volumes currently prohibit repeated
monitoring of large areas. Thus, recent research with airborne data has
increasingly focused on integrating lidar with forest inventory data
in multi-stage sampling frameworks (Andersen, 2009; Gregoire
et al., 2011; Stephens et al., 2012), and also with satellite imagery
(Andersen, Strunk, Temesgen, Atwood, & Winterberger, 2011; Wulder
& Seemann, 2003). To effectively use lidar as a sampling tool in regional
vegetation studies it is of interest to examine how the choice of
sampling design and sampling density can reduce uncertainties in the
estimates.

Multi-spectral satellite sensors provide frequent and consistent
observations of the earth's surface, and have been used extensively for
monitoring vegetation characteristics across a variety of spatial and
temporal scales (Cohen & Goward, 2004; Running et al., 2004). As a re-
sult, a large body of research has focused on estimating biomass directly
with moderate spatial resolution (e.g. Landsat, Hall, Skakun, Arsenault,
& Case, 2006; Powell et al., 2010) and coarse resolution sensor data
(e.g. MODIS, Baccini, Friedl, Woodcock, & Warbington, 2004; Blackard
et al., 2008). To estimate AGB, these studies often utilize empirical
models based on single-date reflectance and field measurements.
However, the signal recorded by passive optical multi-spectral sensors
is known to saturate under closed canopy conditions (Lu, 2006)
diminishing the accuracy of biomass estimates obtained from these
sensors in medium to high biomass forests (e.g. N ~150 Mg ha−1).

Despite this limitation, estimating AGB with multi-spectral sensors
remains an active field of research. Approaches that rely solely on re-
gional statistics and thematic land cover data may greatly misrepresent
the actual spatial distribution of AGB (Goetz et al., 2009). Recently,
Avitabile, Herold, Henry, and Schmullius (2011) compared available
biomass maps for Uganda and found, while estimates obtained from
multi-spectral data and regression models were conservative, maps

based on biome-average values and national land cover data vastly
overestimated AGB. To improve AGB estimates with multi-spectral
data, scientists have tested a variety of modeling techniques (Hudak,
Lefsky, Cohen, & Berterretche, 2002; Powell et al., 2010), utilized multi-
ple intra-annual imagery (Lefsky, Cohen, & Spies, 2001) and inter-
annual time series (Helmer et al., 2010), and included topographic
and climate variables in addition to spectral variables (Baccini et al.,
2004; Powell et al., 2010) with mixed success.

One potential means of enhancing the relationship between Landsat
reflectance and AGB is by incorporating Landsat spectral trends of dis-
turbance and recovery (DR) prior to the date for which predictions are
desired (Pflugmacher, Cohen, & Kennedy, 2012). The conceptual basis
for combining DRmetricswith spectral data derives from ecological ob-
servations that type (e.g. fire, harvest, insect) and intensity of distur-
bances influence forest structure, composition, and carbon dynamics
(Franklin et al., 2002; Halpern, 1988; Harmon, Ferrell, & Franklin,
1990; Spies, 1998). Disturbance type and severity influence the propor-
tion of live biomass that combusts during a fire, is transferred to dead
woody biomass or removed from a site as products (Kasischke et al.,
2005). In combination with environmental factors, disturbances deter-
mine the rate and pathways of subsequent recovery (Gough, Vogel,
Harrold, George, & Curtis, 2007; Meigs, Donato, Campbell, Martin, &
Law, 2009), resulting in highly variable spatial and temporal patterns
of forest regrowth (Halpern, 1988; Yang, Cohen, & Harmon, 2005).

Recently, we tested the DR approach for predicting AGB with good
success (Pflugmacher et al., 2012). Including DR metrics calculated
from yearly Landsat time series (1972–2010) into empirical models
improved prediction accuracy substantially; root mean square error
(RMSE) decreased from 57% to 41% compared to models that used
only single-date (SD) Landsat data. However, the study was a proof-
of-concept and limited to 51 field plots andmanually-digitized trajecto-
ries. Here, our objective was to extend that work to map AGB and AGB
change (ΔAGB). Accomplishing this required that we: 1) automate the
characterization of DR metrics, 2) develop DR-based AGB models,
3) and test if those models can be used to predict historic AGB and
ΔAGB. Further, we wanted to explore the use of airborne lidar for train-
ing statistical models that are better representative of the wide range of
forests and disturbance regimes in the study area than were a limited
sample of field measurements. Thus, instead of using the field plots
from our previous study directly for model training, we use these
plots to create a high-resolution AGB surface predicted from airborne
lidar data.We then sample the lidar-based AGB predictions and quanti-
fy the effect of sampling density on the prediction accuracy of the DR
models.

2. Methods

2.1. Study area

The study area is located in the Blue Mountains of eastern Oregon,
USA (Fig. 1). The area is ~830 km2 and covers two large watersheds of
the Upper Middle Fork John Day River. Current forest structure has
been shaped by natural and anthropogenic disturbances, with harvest,
insects, and fire as major agents. Mountain pine beetle (Dendroctonus
ponderosae Hopkins) and western spruce budworm (Choristoneura
occidentalis Freeman) are themain causes of tree mortality and defolia-
tion (Meigs, Kennedy, & Cohen, 2011). Thinning harvest and frequent
low intensity fire are common, which have created structurally and
compositionally complex mixed and multi-aged conifer-dominated
forests (Campbell & Liegel, 1996). Two high intensity wildfires have
been documented by the Monitoring Trends in Burn Severity (MTBS)
project (http://www.mtbs.gov/). The larger fire burned approximately
14,800 ha in 1996 in the northern part, and the smaller fire burned in
2002 approximately 2600 ha in the south east part of the study area.

The BlueMountain region is characterized by a dry climate, with av-
erage annual precipitation from 305 mm to 1270 mm. Elevation ranges
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