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Multiple remote sensing-based approaches to estimating gross afforestation, gross deforestation, and net defor-
estation are possible. However,many of these approaches have severe data requirements in the formof long time
series of remotely sensed data and/or large numbers of observations of land cover change to train classifiers and
assess the accuracy of classifications. In particular, when rates of change are small and equal probability sampling
is used, observations of changemay be scarce. For these situations, post-classification approachesmay be the only
viable alternative. The study focused on model-assisted and model-based approaches to inference for post-
classification estimation of gross afforestation, gross deforestation, and net deforestation using Landsat imagery
as auxiliary data. Emphasiswas placed on estimation of variances to support construction of statistical confidence
intervals for estimates. Both analytical and bootstrap approaches to variance estimation were used. For a study
area in Minnesota, USA, estimates of net deforestation were not statistically significantly different from zero.
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1. Introduction

The Land Use, Land Use Change Forestry (LULUCF) sector plays a
vital role in the global greenhouse gas (GHG) balance. Although the ap-
proximately 13 million hectares (ha) of forest that are converted to
other land uses annually worldwide account for as much as 25% of an-
thropogenic GHG emissions (Achard et al., 2002; FAO, 2005, p. 13;
Gullison et al., 2007), the LULUCF sector also has the greatest potential
to remove GHGs from the atmosphere.

Carbon accounting includes assessment of the scale of GHG emis-
sions from the forestry sector relative to other sectors. The gain–loss ap-
proach to carbon accounting is the most commonly used approach for
estimating GHG emissions for national measurement, reporting, and
verification (MRV) systems under the auspices of the Intergovernmen-
tal Panel on Climate Change (IPCC) (Giardin, 2010).With this approach,
the net balance of additions to and removals from a carbon pool is esti-
mated as the product of the rates of land use area changes and the re-
sponses of carbon stocks for those land use changes. Remote sensing-
based approaches to estimating rates of forest area change have been
emphasized as an important tool for monitoring changes in forest area
(GOFC-GOLD, 2010, chap. 2). Further, good practice requires that the
uncertainty in estimates of forest area change should be reported, re-
gardless of the method used to obtain the estimates (Köhl, Baldauf,
Plugge, & Krug, 2009; Watson, 2009).

Remote sensing-based change detection methods include two
primary categories, trajectory analyses and bi-temporal methods. Tra-
jectory analyses use time series of three or more images to assess not
only the type and extent of change but also the trends and temporal pat-
terns of change over time. Bi-temporal methods entail the analyses of

images for two different dates and can be further separated into two
subcategories. With post-classification, two forest/non-forest classifica-
tions constructed separately using two sets of forest/non-forest training
data and two images are compared to estimate change,whereaswith di-
rect classification, a single classification of change is constructed using a
single set of forest change training data with data for two images.
Although trajectory analyses produce more detailed information such
as type and timing of change and direct classification focuses explicitly
on the change categories of interest, both methods have rather severe
data requirements. With trajectory analyses, an extensive time series
of imagery is typically required (Kennedy, Cohen, & Schroeder, 2007;
Zhu,Woodcock, & Olofsson, 2012).With direct classification, large num-
bers of change observations may be necessary for training the classifier
and/or assessing accuracy, a difficult task when rates of change are
small and change observations are acquired using equal probability
sampling designs. The advantage of post-classification is that the data
requirements are much less severe. The disadvantage is that two sets
of classification errors must be accommodated, although forest/non-
forest classification errors are often less frequent than forest change
classification errors.

The overall objective was to estimate parameters related to forest
area change using multiple approaches to inference. Response variables
of interest included gross deforestation, defined as loss of forest area;
gross afforestation, defined as gain in forest area including reforestation;
and net deforestation defined as the net result of gross deforestation and
gross afforestation. For a study area in northeastern Minnesota in the
United States of America (USA), two datasets were used, observations
of forest/non-forest for national forest inventory (NFI) plots and corre-
sponding summer Landsat imagery for the years 2002 and 2007. Because
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the combined dataset included few observations of forest area change,
only post-classification approacheswere used. An intermediate technical
objective was to estimate areal population means, μ̂ , and variances, Vâr
μ̂ð Þ , for proportion forest for each year. The final technical objective
was to use the two sets of estimated means and variances, one set for
each of 2002 and 2007, to construct approximate 95% confidence inter-
vals for estimates of parameters related to forest area change between
the two years.

A nonlinear logistic regression model was used to estimate the rela-
tionship between forest/non-forest observations and Landsat spectral
information, and the analyses included investigations of the effects on
estimates of means and variances using different combinations of spec-
tral variables in themodel. Both a probability-based, model-assisted re-
gression estimator and a model-based estimator were used.

2. Data

The study area was defined by the portion of the row 27, path 27,
Landsat scene in northeastern Minnesota, USA, which was cloud-free
for the two image dates, 16 July 2002 and 30 July 2007 (Fig. 1). The
Landsat Thematic Mapper (TM) spectral data were transformed using
the normalized difference vegetation index (NDVI) transformation
(Rouse, Haas, Schell, & Deering, 1973) and the three tasseled cap trans-
formations (TCgreen, TCbright, TCwet) (Crist & Cicone, 1984; Kauth &
Thomas, 1976) for each image. These four transformations were used
as independent variables when constructing models of the relationship
between ground and remotely sensed data.

Ground datawere obtained for plots established by the Forest Inven-
tory and Analysis (FIA) program of the U.S. Forest Service which con-
ducts the NFI of the USA. The program has established field plot
centers in permanent locations using a sampling design that is regarded

as producing an equal probability sample (McRoberts, Bechtold,
Patterson, Scott, & Reams, 2005). Each FIA plot consists of four 7.32-m
(24-ft) radius circular subplots that are configured as a central subplot
and three peripheral subplots with centers located at distances of
36.58 m (120 ft) and azimuths of 0°, 120°, and 240° from the center
of the central subplot. Centers of forested, partially forested, or previ-
ously forested plots are estimated using global positioning system
(GPS) receivers, whereas centers of non-forested plots are verified
using aerial imagery and digitization methods.

Data were available for 249 FIA plots measured in both 2002 and
2007. Field crews visually estimate the proportion of each subplot that
satisfies the FIA definition of forest land: minimum area of 0.4 ha
(1.0 ac), minimum crown cover of 10%, minimum crown cover width
of 36.6 m (120 ft), and forest land use. Field crews also observe species
and measure diameter at-breast-height (dbh) (1.37 m, 4.5 ft) and
height for all trees with dbh of at least 12.7 cm (5 in.). Growing stock
volumes are estimated for individual measured trees using statistical
models, aggregated at subplot-level, expressed as volume per unit
area, and considered to be observations without error. For this study,
data for only the central subplot of each plot were used to avoid dealing
with spatial correlation among observations for subplots of the same
plot. Doing so resulted in little loss of information, because the correla-
tion among observations for subplots of the same plot was greater than
0.85. Subplot-level proportion forest and volume data were combined
with the values of the spectral transformations for pixels containing
subplot centers. For future reference, the term plot refers to the central
subplot of each FIA plot cluster.

Two concerns must be addressed when constructing datasets using
the FIA plot data and Landsat imagery. First, because the smaller
168.3-m2 plots may not adequately characterize the larger 900-m2 TM
pixels, observations for the four plots that were not completely forested
or completely non-forestedwere deleted from the analyses. Second, be-
cause FIA field crews classify plots with respect to land use, not land
cover, plotswhose tree cover has been removed are still classified as for-
est if trees are expected to regenerate and forest land use is expected to
continue. Thus, observations of land cover for plots with forest land use
but no measurable volume were considered to be missing at random
and were also deleted from the analyses. These two data issues are
discussed in detail in Section 4.1. Following deletions, land cover obser-
vations for 199 plots remained.

3. Methods

3.1. Inferential assumptions

All analyses were based on three underlying assumptions: (1) a fi-
nite population consisting of N units in the form of square, 900-m2

Landsat pixels, (2) a sample of n population units in the form of pixels
that contain FIA plot centers, and (3) availability of auxiliary data in
the form of the Landsat spectral transformations for all pixels. In the
following sections, the terms population unit and pixel are used
interchangeably.

For areal assessments, the objective is typically to estimate the area
for a class of the response variable. Because the estimate of class area
is simply the product of total area which is usually known and the esti-
mate of the class area proportion, the focus of this studywas estimation
of the proportion, in this case proportion forest which was denoted μ.
Thus, the analytical objective was construction of an approximate 95%
confidence interval for μ̂ expressed as,

μ̂ � 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂ð Þ

q
; ð1Þ

where Vâr μ̂ð Þ is the estimate of the variance of μ̂ .Fig. 1. Study area in northeastern Minnesota, USA.
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