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We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne
laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a rel-
atively undisturbed period (2004–2007; Δ07–04), a contrasting period of disturbance (2007–2009; Δ09–07),
and an integrated period (2004–2009;Δ09–04). A simple random sampling (SRS) estimator was used to estimate
means and variances of biomass and biomass change for eachmeasurement occasion and interval. For each year,
linear regressionmodels were used to predict mean total aboveground tree biomass for live, dead, and total bio-
mass components from ALS-derived variables. These models predicted biomass with R2 = 0.68, 0.59, and 0.70
and RMSEs of 32.7, 30.5, and 31.7 Mg ha−1 for 2004, 2007 and 2009, respectively. A model assisted indirect
estimatorwas then used to estimate biomass andbiomass change for comparison to thefield-based SRSestimator.
This model assisted indirect approach decreased standard errors of biomass estimation relative to the SRS
estimator, but had larger variances for biomass change estimation. Linear regression models were also used to
directly predict field-estimated biomass change using ALS Δ-variables, calculated as the difference between
multi-temporal ALS variables, for the study area. Integrated over the 6 year period, these change models had
R2 = 0.81, 0.72, and 0.68 with RMSEs of 2.0, 9.3, and 1.0 Mg ha−1 yr−1 for live, dead, and total aboveground
tree biomass, respectively. A model assisted direct estimator reduced standard errors of change estimates by
100–200% compared to the field-based estimates. We discuss several potential advantages and limitations of the
direct and indirect approaches. Our primary finding is that model assisted direct estimation of biomass change
decreased estimation uncertainty relative to both field and model assisted indirect estimation.

Published by Elsevier Inc.

1. Introduction

There is large uncertainty in the carbon sink strength of terrestrial
ecosystems, recently estimated at 1.1 ± 0.8 Pg C yr−1 globally (Pan
et al., 2011). In response, several international initiatives are aimed at
increasing the precision of forest biomass and estimates of biomass
change at multiple spatial and temporal scales. These include, but are
not limited to, the United Nations Collaborative Programme on Reduc-
ing Emissions fromDeforestation and Forest Degradation in Developing
Countries (UN-REDD; http://www.un-redd.org), the Kyoto Protocol's
Land Use, Land Use Change and Forestry section (IPCC, 2006) and the
North American Carbon Program (NACP; http://www.nacarbon.org/
nacp). These initiatives have brought into focus the need for repeatable,
cost-effective, and simple remote sensing methodologies for monitor-
ing, reporting, and verification (MRV) of biomass stocks (Goetz &
Dubayah, 2011).

The estimation of change in biomass stocks is an area of particular
interest (Houghton, Hall, & Goetz, 2009). Because of strong interest in
the net exchange of CO2 between the land and the atmosphere, it may
be more important that we understand the trajectory of the global car-
bon storage than to accurately estimate the storage itself. The estima-
tion of biomass loss and accumulation through time as a response to
various disturbance events presents methodological challenges, partic-
ularly at larger spatial scales (Goetz et al., 2012). Disturbances such as
wildfire, hurricanes, and insect invasions impact both standing biomass
and the future rates of change in these pools. Spatially, we have been
able to incorporate time-series spatial reflectance data to illustrate
the extent and patterning of disturbance at high temporal resolution
(e.g., Zhu, Woodcock, & Olofsson, 2012) and broad spatial scales
(e.g., Blackard et al., 2008; Masek et al., 2008). Many studies have dem-
onstrated, under some conditions, the ability of spatial reflectance data
to reflect the severity of disturbance, particularly in the realm of wild-
land fire intensity (e.g., Keeley, 2009; Veraverbeke & Hook, 2013).

The application of Light Detection and Ranging (LiDAR) data to the
problem of mapping and estimation of terrestrial biomass has been
shown to greatly increase the spatial resolution and accuracy of above-
ground biomass estimates inmany studies (see Asner et al., 2010, 2011;
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Zolkos, Goetz, & Dubayah, 2013). Several recent studies have incorpo-
rated more thorough statistical techniques to estimate the uncertainty
of various biomass estimators across landscapes (Mascaro, Detto,
Asner, & Muller-Landau, 2011; Næsset et al. 2011), with one example
reporting uncertainty at b1% (standard error of themean; SE) of the es-
timated landscape-scale mean carbon density (Gonzalez et al., 2010).
Several studies have successfully decreased estimation uncertainty
while maximizing cost-effectiveness by targeting airborne laser scanner
(ALS) data collections to sample small portions of the population, rather
than gathering wall to wall data (e.g., Andersen, Strunk, Temesgen,
Atwood, & Winterberger, 2012, Gobakken et al., 2012). This work has
been complemented by additional simulation studies thatwere designed
to optimize sampling designs inways that maximized sampling efficien-
cy while minimizing estimation uncertainty (Ene et al., 2012, 2013).

The characterization of change usingmulti-date ALS acquisitions has
not received the same attention as single-date characterization because
of the overall paucity of these repeated-measure datasets. However, as
multi-temporal datasets have become available, several studies have
demonstrated the utility of this approach. For example, Solberg,
Næsset, Hanssen, and Christiansen (2006) illustrated the use of repeat-
ed ALS acquisitions to detect changes in LAI during an insect attack on
Scots pine (Pinus sylvestris L.) in Norway. Additional research has docu-
mented canopy gap formation and closure over two time periods
(Vepakomma, St-Onge, & Keenshaw, 2008, 2011). The estimation of in-
dividual stem height growth has also been reported in several studies
(Yu, Hyyppä, Kaartinen, & Maltamo, 2004; Yu et al., 2005; Yu, Hyyppä,
Kukko, Maltamo, & Kaartinen, 2006). Additionally, Næsset and
Gobakken (2005), Hopkinson, Chasmer, and Hall (2008), and Yu,
Hyyppä, Kaartinen, Maltamo, and Hyyppä (2008) reported that they
were able to estimate mean height and volume change at the plot
level, albeit with low precision.

Even fewer studies have addressed the efficacy of using multi-date
LiDAR acquisitions for the estimation of biomass change. Dubayah
et al. (2010) used large-footprint airborne LiDAR data (LVIS) to estimate
forest structure and biomass change at 1 ha resolution at La Selva Bio-
logical Station, Costa Rica. They reported success at estimating change
in younger forest areas, but were not able to discern increment in
older stands. Hudak et al. (2012) employed multi-date ALS acquisitions
to estimate biomass changes in an actively-managed forest landscape
and concluded that their methodology of modeling biomass separately
for two ALS acquisitions and differencing the resultant model outputs
yielded estimates of biomass change that could be used to monitor bio-
mass change and carbon flux across large tracts of land. Both Næsset,
Bollandsås, Gobakken, Gregoire, and Ståhl (2013) and Bollandsås,
Gregoire, Næsset, and Øyen (2013) employed a similar indirect estima-
tion technique as Hudak et al. (2012), and also directly modeled the
change in biomass using corresponding change in predictor variables
(Δ-variables) derived from the ALS datasets. Bollandsås et al. (2013) in-
dicated that this direct predictionmethodology produced smaller resid-
uals and RMSEs than the indirect approach. Næsset et al. (2013) also
indicated a smaller standard error of the landscape mean biomass
change using a similar direct modeling and estimation approach.

The potential for using ALS as an auxiliary dataset for improving
estimates of forest attribute change is exciting in many fields. Of partic-
ular interest is the estimation of changes to these attributes following
disturbance events such as wildfire, insect defoliation, or blowdown
events. Linking spatially explicit estimates of attribute change with
stratification schemes would allow for categorical assessment of these
events, thereby increasing reporting precision and contributing to the
analysis of events that may be spatially complex and thus difficult to
capturewith traditionalfield inventories. However, the paucity of repeat-
ed ALS datasets and the scarcity of appropriately re-measured inventory
data within their bounds have limited the study and application of ALS-
based change estimation. Thus, fundamental studies are necessary to
develop a knowledge base that builds towards estimating complex
biomass changes with improved estimation uncertainties.

Our study aims to estimate aboveground biomass change for dis-
turbed and undisturbed time periods usingmultitemporal ALS datasets.
Specifically, our objective was to compare the effectiveness of model-
assisted direct and indirect approaches for estimating biomass and bio-
mass change over a 3 × 3 km area using three repeated ALS datasets as
auxiliary data. The repeated ALS acquisitions allowed us to compare es-
timates developed over two contrasting time periods. The first time pe-
riod (3 years) had little field observed mortality while the second
period (2 years) included extensive, heterogeneous, stemmortality fol-
lowing Gypsy moth (Lymantria dispar) defoliation. We also integrated
both time periods for a 5-year analysis of biomass change. We explored
three techniques for the estimation of biomass change. As the first
method, we used a field-based simple random sampling estimator of
aboveground biomass change. We then used linear regression models
to predict biomass across the study area for each of the three ALS acqui-
sitions. The second method indirectly estimated mean biomass change
by differencing estimates of biomass for two measurement occasions.
The third method used models to directly predict the change in biomass
over three timeperiods in response to corresponding changes inALS pre-
dictor variables. These predictions were then used to directly estimate
mean biomass change across the study area. While primarily focused
on comparing approaches for change estimation, this work also provides
analysis that informs several other knowledge gaps. For instance, there is
no literature currently available that demonstrates and evaluates the
efficacy of using repeated ALS datasets to estimate biomass change on
the Atlantic Coastal Plain of the United States. Additionally, there are
few studies that provide estimates of biomass change before and after
heterogeneous, non-stand replacing disturbance events.

2. Data

The study site is located in Burlington County, New Jersey, USA,
within the Pinelands Management Area (PMA), a UNESCOMAB reserve
site (Fig. 1; Latitude 39° 54′ 58.70″ N, Longitude 74° 35′ 51.38″W). The
study area is 3 × 3 km centered on an eddy-covariance and meteoro-
logical tower at the Silas Little Experimental Forest (SLEF) in New
Lisbon, NJ (Fig. 1). The vegetation within the spatial extent of the site
is composed of a predominantly oak (Quercus spp.) overstory with
some pitch (Pinus rigida L.) and shortleaf pines (Pinus echinata Mill.).
The understory is dense, and consists mostly of oak and pine saplings,
scrub oaks, and shrubs, primarily huckleberry (Gaylussacia spp.) and
blueberry (Vaccinium spp.). Much of the study area experienced defoli-
ation by Gypsy moth over three years, beginning in 2006. The intensity
of this disturbance was uneven and caused a spatially variable amount
of stem mortality of mature oaks through the course of the study (see
Clark, Skowronski, Gallagher, Renninger, & Schäfer, 2012; Clark,
Skowronski, & Hom, 2010).

2.1. Field data

We installed 16 forest survey plots, patterned after the United States
Department of Agriculture, Forest Service, Forest Inventory and Analysis
(FIA) plot protocol (http://www.fia.fs.fed.us/), in a regular 4 by 4 pat-
tern following the NACP Tier 3 plot design (Fig. 1; Hollinger, 2008).
Each plot consisted of four circular 14.6 m diameter subplots
(0.07 ha), with one subplot located in the center and three equidistant
subplots distributed symmetrically around and located 36.6 m from
the center subplot. 63 sub-plots were available for analysis following
the rejection of a plot that was partially located on a non-forested
area. Subplot centers were spatially recorded using a differentially
corrected GPS (Pathfinder ProXT, Model # 52240-20, Trimble Naviga-
tion Limited, Sunnydale, CA).Wemade use of variables from the 63 sub-
plots, as opposed to the 16 aggregated plots, to increase the number of
data points available for biomass and biomass change predictive
model fitting. This design is somewhat problematic because of the po-
tential for spatial correlation between observations, given their
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