Remote Sensing of Environment 128 (2013) 197-211

Contents lists available at SciVerse ScienceDirect

Remote Sensing
Envirdnment

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Integration of in situ measured soil status and remotely sensed hyperspectral data to
improve plant production system monitoring: Concept, perspectives and limitations

Laurent Tits **, Ben Somers ®, Jan Stuckens ¢, Jamshid Farifteh 2, Pol Coppin ?

2 Dept. of Biosystems, M3-BIORES, Katholieke Universiteit Leuven, W. de Croylaan 34, BE-3001 Leuven, Belgium
Y Flemish Institute for Technological Research (VITO), Centre for Remote Sensing and Earth Observation Processes (TAP), Boeretang 200, BE-2400 Mol, Belgium
€ GeolD, Researchpark Haasrode, Interleuvenlaan 62, 3001 Leuven, Belgium

ARTICLE INFO ABSTRACT

Article history:

Received 25 June 2012

Received in revised form 10 October 2012
Accepted 11 October 2012

Available online 8 November 2012

A common problem in agricultural remote sensing is the sub-pixel spectral contribution of background soils,
weeds and shadows which impedes the effectiveness of spectral vegetation indices to monitor site-specific
variations in crop condition. To address this mixture problem, the present study combines in situ measured
soil status and remotely sensed hyperspectral data in an alternative spectral unmixing algorithm. The model
driven approach, referred to as Soil Modeling Mixture Analysis (SMMA), combines a general soil reflectance
model and a modified spectral mixture model providing as such the opportunity to simultaneously extract
the sub-pixel cover fractions and spectral characteristics of crops. The robustness of the approach was exten-
sively tested using ray-tracer data (PBRT) from a virtual orchard, and results showed an improved monitor-
ing of the crop's chlorophyll, water content and Leaf Area Index (LAI). A significant increase in the R? between
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1. Introduction

During the last 50 years, agricultural production strategies have
changed dramatically, mostly due to economic decisions to reduce
the inputs and maximize the profits, and due to environmental guide-
lines for a more efficient and safer use of chemicals (Pinter et al.,
2003). Perhaps the most significant change is the shift towards preci-
sion, or site-specific, crop management. Within-field variability is
taken into account to optimize the management practices. This re-
quires accurate and consistent information on soil and plant condi-
tions across the farm, and at temporal and spatial scales that match
rapidly evolving capabilities to vary cultural procedures, irrigations,
and agrochemical inputs (Dorigo et al., 2007; Pinter et al., 2003). An
emerging technology in precision agriculture to provide this informa-
tion is hyperspectral remote sensing (Dorigo et al., 2007; Zarco-
Tejada et al., 2004). Hyperspectral data contains valuable information
with respect to the physical and chemical properties of surface tar-
gets. Moreover, when hyperspectral remote sensing is applied with
a high temporal resolution - by sensors on-board of satellites - intensive
monitoring of biophysical and biochemical crop characteristics during
growth can become a reality, through for instance the use of vegetation
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indices (Zarco-Tejada et al., 2004) or through radiative transfer model in-
versions (Jacquemoud et al., 2009). Above ground biomass (Clevers et al.,
2007), canopy chlorophyll content (Zarco-Tejada et al., 2004), leaf equiv-
alent water thickness (Eitel et al., 2006), Leaf Area Index (LAI, Delalieux
et al., 2008) and leaf nutrient status (Hansen & Schjoerring, 2003) are
only a few of the biophysical attributes that have successfully been mon-
itored using features derived from hyperspectral observations.

Aforementioned examples reveal the huge potential of hyper-
spectral satellite observations for plant production system manage-
ment. This is also reflected in the mission statements of the upcoming
hyperspectral satellites. For the Environmental Mapping and Analysis
Program (EnMAP), the main objective is “to investigate a wide range of
ecosystem parameters encompassing agriculture, forestry, soil and geo-
logical environments, coastal zones and inland waters” (Environmental
Mapping & Analysis Program, 2012). The Canadian Hyperspectral Envi-
ronment and Resources Observer (HERO) states it as “provide the
Hyperspectral user community with high quality information on the sur-
face of the Earth, specifically the plants and materials that cover it and
their changes with time” (MDA corporation, 2012).

Yet, present-day input parameters provided by hyperspectral sat-
ellite observations are not adequate enough. Spectral reflectance dis-
tortions caused by the atmosphere and the considerable orbital
height of satellites (roughly ranging between 650 and 800 km) dras-
tically impact image interpretation (Brown, 1992). Most of these
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distortions can be corrected for by geometric, radiometric and atmo-
spheric algorithms (Biliouris et al., 2009; Itten & Meyer, 1993). Yet, a
persisting issue is the mixture problem associated with the composite
nature of pixels (Adams et al., 1993). Because of the large observation
height, in combination with the high spectral resolution of hyper-
spectral satellites, the size of an image pixel is considerable. All
current (i.e. Hyperion) and upcoming (e.g. HERO, EnMAP, TAIKI
HSC-III) hyperspectral satellites have a spatial resolution of 30 m. It
exceeds in many cases the size of the objects of interest. Consequent-
ly, the reflectance signal of a pixel is the integrated result of spectral
contributions of different subpixel elements building up a pixel. This
constrains the accuracy of spectral analysis based on vegetation
index development or other feature extraction techniques (Roberts
et al., 1993). The mixture problem is also aggravated in agricultural
image scenes where mixed pixels prevail because of the discontinu-
ous open canopies typical for most (perennial) cropping systems
(Peddle & Smith, 2005). In Fig. 1, this is demonstrated by showing a
high resolution aerial image of a citrus orchard. A 30 by 30 m pixel
grid is superimposed to illustrate that the reflectance of most satellite
pixels in an agricultural image scene cannot be simply interpreted in
terms of crop properties only. For most pixels, subpixel mixing of soils
and/or shadows occurs.

In more traditional plant system monitoring studies using
(spaceborne) remote sensing, the mixing problem is often ignored
or rather superficially dealt with. The majority of available unmixing
algorithms are focused on roughly estimating the proportional
ground cover of the vegetation class in a mixed pixel (e.g. Quarmby
et al, 1992; Asner & Heidebrecht, 1992; Lobell & Asner, 2004;
Fitzgerald et al., 2005; Peddle & Smith, 2005; Somers et al., 2009a).
This technique, hereafter referred to as Area Unmixing (AU), is popu-
lar for the rapid, early and low-cost assessment of crop area statistics
from multi-temporal and -spectral low (spatial) resolution imagery
(Verbeiren et al., 2008), but the technique is clearly unable to extract
spectrally ‘pure’ vegetation characteristics, uncontaminated by pixel
components, such as soil and shadow.

Several authors dealt with this problem partially by adjusting
existing vegetation indices, in particular the Normalized Difference
VI (Tucker, 1979) and the Simple Ratio (Jordan, 1969) indices, to
make them more robust for soil background effects. The basic as-
sumption of these soil-adjusted vegetation indices is that soils are
characterized by a unique linear relationship between NIR (700-
1350 nm) and VIS (400-700 nm) reflectance, i.e., the soil line.
Huete (1988) adapted the formula of NDVI by including the coeffi-
cients of the soil line in the Soil-Adjusted Vegetation Index (SAVI).
The transformed (TSAVI; Baret & Guyot, 1991), modified (MSAVI; Qi
et al., 1994) and optimized SAVI (OSAVI; Rondeaux et al., 1996) are

all variants of the traditional SAVI. Despite these efforts, the success
of the soil-adjusted indices is limited because the soil line is not as
generic as assumed while the technique is mainly restricted to correc-
tions in the VIS-NIR spectral domain (Delalieux et al., 2008; Rondeaux
et al.,, 1996).

An accurate monitoring method for critical crop production parame-
ters, however, requires the removal of undesired spectral background ef-
fects from mixed image pixels. Consequently, a more generic approach to
reduce subpixel background effects is needed allowing the accurate and
site-specific monitoring of plant production systems. Tits et al. (in press)
proposed a Signal Unmixing (SU) methodology to extract the ‘pure’ veg-
etation signal from a mixed pixel signal consisting of soils and vegetation.
Using an extensive spectral library for each endmember, a Multiple
Endmember Spectral Mixture Analysis (MESMA, Roberts et al.,, 1998)
approach was used to evaluate different endmember combinations,
selecting the endmember combination with the lowest modeling error
as the spectral signatures of the components in the pixel. Two major lim-
itations of the MESMA methodology are (i) the requirement of large
libraries to encompass the spectral variability that can be expected to
occur in the field, and (ii) ill-posedness effects resulting in multiple
endmember combinations that produce the same mixed spectrum
(Tits et al., in press). However, results showed that the performance of
the SU model improved significantly with increasing knowledge on the
soil endmember, as it minimizes the two difficulties described above.

In this study we hypothesize that the integration of in situ mea-
sured soil status data and remotely sensed hyperspectral data can
provide the needed information to estimate the spectral signature
of the soil endmember, so that the subpixel vegetation reflectance
signature can be extracted from the mixed image pixels. Previous
studies have already demonstrated the added value of combining re-
mote sensing and in situ data inputs for improved image interpreta-
tion. Examples for more general applications are the vicarious
calibration of sensors (Dinguirard & Slater, 1999) and the atmospher-
ic correction of satellite images using the invariant-object method
(Liang et al., 2001). In situ data is also used in combination with
remotely sensed spectral data in applications such as climatology
(Reynolds et al., 2002), sediment transportation (Ouillon et al.,
2004) and agriculture (Dzikiti et al., 2010). Both Kerr and Ostrovsky
(2003) and Zaks and Kucharik (2011) state that a combination of
field measurements and remote sensing is needed to solve the prob-
lem of scale mismatch between field data and most remote sensing
data sources. The same principle is used in this study to introduce a
SU technique to remove soil background and shadow effects from op-
tical satellite images. The proposed concept consists of the assimila-
tion of soil reflectance models (Miiller & Décamps, 2001; Somers et
al., 2009c¢, 2010) and Spectral Mixture Analysis (SMA; Adams et al.,

Fig. 1. Example of a 30 by 30 m grid over a high resolution image, combined with a detail of a pixel to illustrate the mixed nature of the pixel.

Adapted from Somers (2009d).
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