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The Environment Canada's Ice Concentration Extractor (ECICE) combines observations from several different
satellite sensors to resolve heterogeneous components of a given footprint. To validate the algorithm and dem-
onstrate its applicability, results are presented from combining the enhanced AMSR-E 36.5 GHz passive micro-
wave data with dual-polarization QuikSCAT active microwave scatterometer observations of Arctic ice during
September toMay; 2007/08. Validation is performed using comparisonwith results from other algorithms in ad-
dition to operational ice charts. Three ice types are resolved: young, first-year andmultiyear. Total ice concentra-
tion from ECICE under cold Arctic winter conditions is in agreement with estimates from previous algorithms
such as the enhanced NASA Team. Distribution of multiyear ice concentration from ECICE is presented along
with evolution of daily concentration of each ice type. Events ofmelt-refreeze,which are commonduring season-
al transition periods, causemisidentification ofmultiyear ice asfirst-year ice in the fall. The reverse is observed in
the spring. This is a limitation on ice type identification. ECICE is an optimal approach that minimizes the error
between observations and predicted concentrations. It provides a confidence measure associated with each ice
concentration estimate. It is a generic algorithm, i.e. its applications are not limited to AMSR-E and QuikSCAT.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

1. Introduction

Oneof theprimary indicators of awarmer Arctic climate is the recent
rapid decrease in Arctic sea ice cover. Arctic sea ice declined at a rate of
approximately 3% per decade in 1979–1996 and that rate has increased
to about 10% per decade for the perennial ice extent in 1997–2007
(Comiso et al., 2008; Stroeve et al., 2007). Perennial ice is the ice cover
that survives summer melt and consists mainly of thick multiyear ice
(MYI) floes. The MYI in the central Arctic has decreased by more than
42% since 2005 (Kwok et al., 2009). This decrease has been accompanied
by a reversal in the proportion of seasonal to multiyear ice types with
seasonal sea ice now covering more than two thirds of the Arctic
Ocean in late winter (Kwok et al., 2009). Seasonal ice refers to Young
ice types (YI), which is b35 cm thick as well as first-year ice (FYI)
which is >35 cm thick. With a changing climate, the composition of
sea ice types in sub-regions within the Arctic is expected. For example,
recent studies of Agnew et al. (2008) and Howell et al. (2009) have
found evidence of increased influx of Arctic pack ice into the Canadian
Arctic Archipelago. These observations point to the importance of devel-
oping algorithms which can better estimate not only total but also ice
type concentrations. Better discrimination among different ice types is

also important in operational ice services. This paper is an attempt to
contribute to this goal.

The most popular sea ice algorithms rely on a single passive micro-
wave sensor, mostly the Special Sensor Microwave Imager (SSM/I)
(Hollinger et al., 1987) or the Advanced Microwave Scanning Radiome-
ter for (AMSR-E) (Kawanishi et al., 2003). Identifying total ice concen-
tration (i.e. ice versus open water) is relatively easy because the
microwave radiation from open water (OW) is usually quite distinct
from that of sea ice. Some algorithms are capable of identifying certain
ice types anddetermining their partial concentration but the ice type es-
timates are generally less accurate than total ice concentration. The
NASA Team (NT) algorithm (Cavalieri et al., 1984) is capable of discrim-
inating between FYI and MYI and so is the ARTIST Sea Ice (ASI)
(Kaleschke et al., 2001) algorithm when results are further processed
using the Lomax algorithm (Lomax et al., 1995). The NASA Thin Ice
(NT-Thin) algorithm (Cavalieri, 1994) identifies thin ice, and the en-
hanced NASA Team2 (NT2) algorithm (Markus & Cavalieri, 2000) iden-
tifies a surface type (called C-type) composed mainly of surface glaze
and layering of the snow pack. The overlap of a given radiometric pa-
rameter from different ice types makes identification of those ice types
difficult. Such overlap increases under complex surface conditions in re-
sponse to meteorological forcing. This is particularly true during season
transition; i.e. from late melt season to early freeze-up seasons when
significant changes in the physical conditions of snow takes place
(Agnew & Howell, 2003).
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The added information from combining data of different satellite
sensors has been used by several authors to improve the retrieval of par-
tial ice concentrations. In a previous study by Beaven and Parra (2000)
the authors used a least-squares solution to a linear mixture model
within a hybrid fusion algorithm to estimate ice type concentration
from Synthetic Aperture Radar (SAR) and passive microwave observa-
tions. In another study (McNutt et al., 2001) SAR and Advanced Very
High Resolution Radiometer (AVHRR)were combined to further under-
stand the behavior of seasonal and marginal ice zones (MIZ) in the
Beaufort Sea and its implication on modeling ice dynamics. QuikSCAT
radar and SSM/I radiometer data were also combined in Tonboe and
Toudal (2005) to classify new ice off Greenland and in Walker et al.
(2006) to identify a separate kind ofmultiyear icewhichwas incorrectly
classified as first-year ice by passive microwave SSM/I data alone. In a
more recent study Yu et al. (2009) AMSR-E and QuikSCAT imagery
were combined using a supervised sea ice classification scheme tobetter
identify ice types and their concentrations. It was found that QuikSCAT
data contain additional information that augments the passive micro-
wave observations. Nevertheless, trend analysis of the sea-ice concen-
tration time series that are calculated with the various existing sea-ice
concentration retrieval algorithms (Anderson et al., 2007) has shown
substantially different results from different algorithms.

This paper is an application of an algorithm called Environment
Canada's Ice Concentration Extractor (ECICE), which can combine

observations from different satellite sensors to estimate concentrations
of specified ice types (Shokr et al., 2008). The algorithm is applied to a
combination of spatially enhanced AMSR-E and QuikSCAT data in an at-
tempt to improve on single sensor algorithm estimates of ice type con-
centration. It should be emphasized that the algorithm is quite generic;
i.e. not designed specifically for AMSR-E, QuikSCAT or their combination.
It can take other radar, visible or infrared observations. The data set
covers the entire Arctic basin from September 1st 2007 to May 31st
2008. The three ice types presented in this study are; young ice (YI),
first-year ice (FYI), and multiyear ice (MYI), in addition to open water
(OW). The overall purpose of the study is to highlight the potential
and limitations of the passive/activemicrowave combination in identify-
ing ice types and consequently their concentration using ECICE. This will
also reveal the potentials and limitations of the algorithm. The informa-
tion should furnish a background for future studies that use longer re-
cords of passive/active microwave combination to identify spatial and
temporal patterns of Arctic ice types and conditions. A recent study on
the spatial and temporal distributions of young ice in the Arctic from
2002 to 2009 using ECICE can be found in Shokr and Dabboor, in press.

Sections 2 and 3 describe the data sets and the algorithm; respec-
tively. Section 4 addresses the probability distributions of the radiomet-
ric parameters that are used in ECICE for each one of the given ice types
in addition to OW. Section 5 presents the results. It starts with compar-
ison of results from ECICE against corresponding results from NT2 and
ASI algorithms. It then proceeds to present case studies that show the
potential and limitations of this application. Even when the algorithm
fails to identify FYI and MYI correctly, it points out the meteorological
conditions that lead to the misidentification. The new information that
can be revealed using the algorithmwith the aforementioned combina-
tions is highlighted in this section.

2. Data sets

In addition to QuikSCAT and AMSR-E data, two other data sources
were used to support interpretation of the ice concentration results:

Table 1
Brightness temperature from passive microwave 36 GHz channel and backscatter from
the Ku band modeled data. Numbers between brackets indicate the standard deviation.

Tb (36 h) Ku σhh
o

Eppler et al. (1992) NT2 tie points Kim (1984)

OW 130 134.8 –

YI – 183.5 −13.0 (−5.1)
FYI 232 223.8 −17.9 (−8.1)
MYI 175 – −7.5 (−5.8)
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Fig. 1. Probability distributions of each radiometric parameter for each ice surface plusOW. Brightness temperatureswere obtained fromAMSR-E and backscatter fromQuikSCAT. Noisefloor of
backscatter is−36 dB. Data for OW are obtained from pixels with up to 4 m/s wind speed.
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