

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Review

State of the art satellite and airborne marine oil spill remote sensing: Application to the BP *Deepwater Horizon* oil spill

Ira Leifer ^{a,*}, William J. Lehr ^b, Debra Simecek-Beatty ^b, Eliza Bradley ^c, Roger Clark ^d, Philip Dennison ^e, Yongxiang Hu ^f, Scott Matheson ^e, Cathleen E. Jones ^g, Benjamin Holt ^g, Molly Reif ^h, Dar A. Roberts ^c, Jan Svejkovsky ⁱ, Gregg Swayze ^d, Jennifer Wozencraft ^h

^a Marine Science Institute, University of California, Santa Barbara, CA, United States

^b NOAA Office of Response and Restoration, Seattle, WA, United States

^c Geography Department, University of California, Santa Barbara, CA, United States

^d US Geological Survey, Denver, United States

e Department of Geography and Center for Natural and Technological Hazards, University of Utah, Salt Lake City, UT, United States

^f NASA Langley Research Center, Hampton, VA, United States

^g Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States

^h US Army Corp of Engineers, Kiln MS, United States

ⁱ Ocean Imaging Corporation, Solana Beach, CA, United States

ARTICLE INFO

Article history: Received 21 July 2011 Received in revised form 20 March 2012 Accepted 24 March 2012 Available online 12 June 2012

Keywords: Oil spill Deepwater Horizon Remote sensing Lidar Near infrared Thermal infrared Satellite Airborne remote sensing Synthetic aperture radar MODIS Hyperspectral Multispectral Expert system False positives Technology readiness Operational readiness Visible spectrum Oil water emulsions Spill response AVIRIS Synthetic aperture radar UAVSAR Fire CALIPSO Oil slick thickness Laser fluorescence

ABSTRACT

The vast and persistent *Deepwater Horizon* (DWH) spill challenged response capabilities, which required accurate, quantitative oil assessment at synoptic and operational scales. Although experienced observers are a spill response's mainstay, few trained observers and confounding factors including weather, oil emulsification, and scene illumination geometry present challenges. DWH spill and impact monitoring was aided by extensive airborne and spaceborne passive and active remote sensing.

Oil slick thickness and oil-to-water emulsion ratios are key spill response parameters for containment/cleanup and were derived quantitatively for thick (>0.1 mm) slicks from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data using a spectral library approach based on the shape and depth of near infrared spectral absorption features. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite, visible-spectrum broadband data of surface-slick modulation of sunglint reflection allowed extrapolation to the total slick. A multispectral expert system used a neural network approach to provide Rapid Response thickness class maps.

Airborne and satellite synthetic aperture radar (SAR) provides synoptic data under all-sky conditions; however, SAR generally cannot discriminate thick ($>100 \,\mu$ m) oil slicks from thin sheens (to 0.1 μ m). The UAVSAR's (Uninhabited Aerial Vehicle SAR) significantly greater signal-to-noise ratio and finer spatial resolution allowed successful pattern discrimination related to a combination of oil slick thickness, fractional surface coverage, and emulsification.

In situ burning and smoke plumes were studied with AVIRIS and corroborated spaceborne CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations of combustion aerosols. CALIPSO and bathymetry lidar data documented shallow subsurface oil, although ancillary data were required for confirmation.

Airborne hyperspectral, thermal infrared data have nighttime and overcast collection advantages and were collected as well as MODIS thermal data. However, interpretation challenges and a lack of Rapid Response Products prevented significant use. Rapid Response Products were key to response utilization—data needs are time critical; thus, a high technological readiness level is critical to operational use of remote sensing products. DWH's experience demonstrated that development and operationalization of new spill response remote sensing tools must precede the next major oil spill.

© 2012 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail address: Ira.Leifer@bubbleology.com (I. Leifer).

0034-4257/\$ – see front matter $\textcircled{\sc 0}$ 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.rse.2012.03.024

Contents

1.	Intro	oduction	186
	1.1.	Overview	186
	1.2.	Background: oil slick science	187
		1.2.1. Marine oil sources	187
		1.2.2. Oil slick processes	187
		1.2.3. Oil spill response	187
		1.2.4. Oil slick remote sensing for oil spill response	188
	1.3.	Oil slick remote sensing of the DWH	188
2.	Passiv	ive remote sensing of oil slicks	189
	2.1.	Background: oil slick spectroscopy	189
		2.1.1. Visible appearance of oil slicks	189
		2.1.2. Visible spectrum oil slick assessment	190
		2.1.3. Visible spectrum oil slick appearance: underlying spectroscopy	191
		2.1.4. Near infrared oil slick appearance: underlying spectroscopy	191
		2.1.5. Thermal infrared oil slick appearance (emissivity)	193
	2.2.	Passive oil slick remote sensing	194
		2.2.1. Multispectral (visible and thermal) expert system	194
		2.2.2. Ouantitative oil slick imaging spectroscopy	194
		223 Satellite visible oil slick remote sensing	194
		224 Satellite thermal infrared oil slick remote sensing	195
	23	Oil slick passive remote sensing of DWH	195
	2.5.	231 Airborne oil slick remote sensing data collection	195
		2.3.2 Multisnectral oil slick thickness classification of DWH	196
		23.3 Hyperspectral quantitative oil slick mapping of the DWH	197
		2.3.4 Airborne thermal infrared oil slick mapping of the DWH	197
		2.3.5. Satellite oil slick remote sensing of the DWH	198
3	Activ	2.55. Such the only of the bound sensing of the bound sensing of the bound sensing	108
э.	3.1	Background: active all slick remote sensing	108
	J.1.	211 Surther and the relations of the sensing	100
		3.1.1. Synthetic aperture radial off sick observations	190
		2.1.2. Antibolite and spacebolite synthetic aperture radar	100
	ว ว	Active remets consists of the DWIL	199
	5.2.	Active remote sensing of the DWH.	200
		3.2.1. Althome Synthetic aperture radar remote sensing of the DWH.	200
		3.2.2. Satellite synthetic aperture radia remote sensing of the DWH	201
4	01	3.2.3. All porte and spaceborne laser remote sensing of the DWH	201
4.		pili impacts	201
	4.1.	Background: oil slick impact remote sensing.	201
		4.1.1. Vegetation and ecosystem impacts	201
		4.1.2. Fire and oil spills	202
		4.1.3. Oil spill fire aerosols.	202
		4.1.4. Oil slick volatiles	202
	4.2.	Oil slick ecosystem impact remote sensing of the DWH	204
		4.2.1. In situ burning and well flaring	204
		4.2.2. Oil slick trace gases remote sensing of the DWH	205
	4.3.	Vegetation and ecosystem impacts remote sensing of the DWH	205
5.	Discu	ussion	205
	5.1.	Oil slick remote sensing	205
		5.1.1. Passive airborne oil slick remote sensing	205
		5.1.2. Passive satellite oil slick remote sensing	206
		5.1.3. Active satellite and airborne oil slick remote sensing	206
	5.2.	Applications of quantitative oil slick thickness mapping	206
	5.3.	Real world application of remote sensing technology to oil slicks	206
6.	Concl	clusions	207
Ackı	nowled	rdgments	207
Refe	rences	°S	207

1. Introduction

1.1. Overview

Marine petroleum affects the environment, economy, and quality of life for coastal inhabitants leading to concerns that include resource exploration, recovery, transportation, and resultant oil spill contingency planning, mitigation, and remediation (Jensen et al., 1990). Traditionally, remote sensing has played a secondary support role in oil spill response and monitoring. However, recent technological advancements and sensor availability have enabled a more important role for remote sensing. During the *Deepwater Horizon* (DWH) spill, several remote sensing technologies rapidly moved up the technological readiness scale (Ramirez-Marquez & Sauser, 2009), propelled by the spill's scale and urgency.

In this review, we summarize and discuss the role of remote sensing technologies used in the DWH response with varying degrees of effectiveness. This paper has five sections: 1) oil spill processes relevant to oil spill response and remote sensing interpretation, 2) passive oil-spectroscopy and remote sensing, 3) active oil remote sensing, 4) remote

Download English Version:

https://daneshyari.com/en/article/4458998

Download Persian Version:

https://daneshyari.com/article/4458998

Daneshyari.com