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A spatially continuous field of landscape fractional covers of tree, grass and bare soil is required at regional and
continental scales for earth system modeling and environmental monitoring. Climate and its variability drive
vegetation fractional cover over time and space. For savanna ecosystems, precipitation plays the main role in
shaping vegetation composition. In this study, we estimate land cover fraction at a satellite pixel scale by
employing an existing ‘Mean-Sensitivity Unmixing Algorithm’ (MSUA), which is based on a state space defined
by twokey variables: (1)meanpixel values (referring tomean vegetation states), and (2) inter-annual sensitivity of
pixel values to precipitation (referring to vegetation sensitivity to precipitation). We define these two variables
through a multi-sensor assessment of three vegetation remote sensing datasets, namely (i) Normalized Difference
Vegetation Index (NDVI), based on the visible and near-infrared bands from the Advanced Very High Resolution Ra-
diometer (AVHRR); (ii) backscatter coefficients (dB) from the NASA QuikSCAT active-microwave scatterometer;
and (iii) Vegetation Optical Depth (VOD) based on NASA Advanced Microwave Scanning Radiometer on EOS
(AMSR-E) passive-microwave radiometry measurements. A merged satellite-gauge precipitation dataset from the
Tropical Rainfall MeasuringMission (TRMM) version 3B42V6 is used. The three remote sensing datasets show gen-
erally similar but distinctive performances in characterizing the two key variables over various land cover types.
NDVI and VOD perform better than dB in characterizing land cover variation based on mean pixel values; while
dB represents more reliable and robust vegetation sensitivity to precipitation. By using NDVI for mean vegetation
states and dB for inter-annual variability of vegetation to precipitation, we develop an improved fractional cover
product.Wefind that our product agreeswell with the tree fraction derived fromhigh-resolution images for natural
vegetation regions, and can reproduce the distinctive land cover pattern of grass and bare soil in theModerate Res-
olution Imaging Spectroradiometer (MODIS) land cover product. For cropland-mixed regions, our tree fraction is
overestimated since human impacts (e.g. irrigation) have not been accounted for in the MSUA. The improved per-
formance from our approach is achieved by the synergistic use of the three vegetation remote sensing datasets, and
their physical interpretations have been discussed to support the validity of this approach.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Vegetation structure and composition play an important role in un-
derstanding ecosystem functioning (e.g. fire and grazing), as well as in
managing ecosystem services (e.g. deforestation monitoring) (Hirota
et al., 2011; K'efi et al., 2007;Mayaux et al., 2005;Miles et al., 2006). Veg-
etation fractional cover is also crucial for representing sub-pixel hetero-
geneity in climate and land-surfacemodels (Avissar & Verstraete, 1990;
Gutman & Ignatov, 1998; Zeng et al., 2000). Thus a spatially-continuous
and reliable representation of vegetation fractional cover is required at
regional and continental scales. This is especially true for savanna eco-
systems, which are typically characterized as a mixture of woody and
herbaceous vegetation (Sankaran et al., 2005; Scholes & Archer, 1997).
Savanna ecosystems comprise approximately 20% of the global land
area and up to 40% of the African continent (Scholes & Walker, 1993).

This vast terrestrial extent makes savanna ecosystems a significant com-
ponent in the global terrestrial carbon budget (Grace, 2004; Randerson
et al., 1997). Possible degradations in savanna ecosystems induced by
drought, overgrazing, fire regime shift, and woody encroachment in
the context of a changing climate warrant a better quantification of the
relative abundance of vegetation fractional covers.

Climate variability shapes the landscape structure at various spatial
and temporal scales, with precipitation being the major driving force in
characterizing vegetation composition in savanna ecosystems (Good &
Caylor, 2011; Rodriguez-Iturbe & Porporato, 2004; Scanlon & Albertson,
2003). Different vegetation types respond differently to precipitation
patterns. In particular, herbaceous plants utilize dense and shallow root
systems to use ephemerally available water in the upper soil layer,
while woody plants have a root system which can penetrate deeper
soil layers and access a more stable supply of soil water (Scanlon et al.,
2002). In addition, herbaceous plants in dry/semi-dry savanna ecosys-
tem have a photosynthetic pathway (C4) that synthesizes more carbon
per unit of water than do C3 woody plants (Ehleringer & Monson,
1993). For these reasons, herbaceous plants are more sensitive to
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precipitation and have a relatively low above-ground biomass. Woody
plants, on the other hand, are less sensitive to precipitation variability
with a relatively high above-ground biomass (Scanlon et al., 2002;
Scholes & Walker, 1993). Thus it is possible to estimate sub-pixel frac-
tional covers by leveraging the differences in trees and grasses in terms
of their above-ground biomass and their sensitivity to precipitation.

Remote sensing (RS) provides the most efficient way to derive
fractional covers at regional and global scales. At medium to coarse
resolutions (>250 m), representative RS-based approaches for deriv-
ing vegetation fractions include:

(i) spectral-based supervised classification (hereafter referred as
‘SC’, e.g. Friedl et al., 2002; Hansen et al., 2003);

(ii) spectral-based linear unmixing techniques (‘SU’, e.g. DeFries et
al., 1999; Okin, 2007);

(iii) relative vegetation abundance approach scaled by maximum
and minimum vegetation index (‘RA’, e.g. Gutman & Ignatov,
1998; Zeng et al., 2000);

(iv) multi-angle geometric-optical model (‘GO’, e.g. Chopping et al.,
2008, 2009); and

(v) ‘Mean-Sensitivity Unmixing Algorithm’ (MSUA) based on the
different responses of land covers to precipitation variability
(Scanlon et al., 2002).

The spectral-based approaches (SC and SU) require spectral char-
acterizations of each land cover component, which are usually deter-
mined from training datasets and associated empirical knowledge
(Friedl et al., 2002). The RA approach constructs a ratio scaled by max-
imum and minimum vegetation index values, and this approach does
not account for the heterogeneity of different plant functional types
within each pixel. The GO approach takes the three-dimensional struc-
ture of landscape into account by using multi-angle geometric-optical
models, and has shown great potential for representing savanna struc-
ture (Chopping et al., 2008), but local calibration from high-resolution
imagery is usually required. These four methods are either unable to
extract sub-pixel fractional covers or require calibration and/or empirical
knowledge. The ‘Mean-Sensitivity Unmixing Algorithm’ developed by
Scanlon et al. (2002) provides a different linear unmixing algorithm for
sub-pixel fractional cover that does not require calibration or other em-
pirical inputs. The algorithm utilizes the knowledge that different plant
functional types have different vegetation responses to precipitation,
and constructs a state space formed by two key variables for linearly
decomposing sub-pixel fractional covers:

(1) the mean vegetation states;
(2) the inter-annual sensitivity of vegetation to precipitation.

The algorithm objectively determines the endmembers on the basis of
an optimal fit to the observed data. Scanlon et al. (2002) applied the
MSUA concept to a Kalahari savanna transectwith a precipitation gradi-
ent of 300–1600 mm/yr using Normalized Difference Vegetation Index
(NDVI) as the vegetation dataset. In tropical regions with extensive
cloud cover, the MSUA's effectiveness may be limited if it only uses
the visible–near infrared (Vis–NIR)-based NDVI.

Vis–NIR RS has the longest history of vegetation monitoring. For ex-
ample, the Vis–NIR-based vegetation index record from the AVHRR is
from 1981 till present (Tucker et al., 2005). But the accuracy of Vis–
NIR RS products is affected by a number of factors include incomplete
atmospheric corrections (Tanre et al., 1992; Viovy et al., 1992), the in-
ability of the bidirectional reflectance distribution function (BRDF) to
represent the surface anisotropy property (Chopping et al., 2002), and
cloud cover that prevents Vis–NIR surface measurement especially for
tropical regions. Cloud fractions significantly increase during the rainy
season in tropical Africa (Fig. 1), which overlaps with the growing sea-
son. An analysis of the MODIS reflectance product MOD09 shows that
the daily NDVI suppression is correlated with cloud fraction during
the growing season in Africa (results not shown here), and similarly
for the AVHRR-based product (Tang & Oki, 2007). Maximum-value

compositing (MVC) (Holben, 1986; Viovy et al., 1992), temporal/spatial
averaging (Zhao et al., 2005), or the stricter cloud-pixel-screening
approaches (Heidinger et al., 2002)when applied to Vis–NIR RS datasets
can overcome this problem to a certain extent. But cloud residual noise
is still hard to separate from the true vegetation signals, and regionswith
extensive cloudiness often have large gaps (or significant noise) in their
product during the growing seasons. The low signal-to-noise ratio in
vegetation products causes problems in quantifying intra- and inter-
annual sensitivity of vegetation states to climate variability, particularly
in these regions. Thus, alternative measurements are required, such as
those frommicrowave sensors that have the ability to penetrate clouds.

In this paper, we apply the MSUA algorithm to derive the vegetation
fractional covers over a tropical savanna regionwith a broad precipitation
gradient ranging from200 to2000 mm/yr.Weutilize andassess the capa-
bility of three independent RS products to determine two key variables
needed by theMSUA: themean vegetation states and the vegetation sen-
sitivity to precipitation. The three RS datasets are: (i) NDVI, based on Vis–
NIR bands in AVHRR; (ii) backscatter coefficients (dB) from NASA's
QuikSCAT active-microwave scatterometer; and (iii) Vegetation Optical
Depth (VOD) based on NASA's AMSR-E passive-microwave radiometry
measurements. Based on a comprehensive assessment of the multi-
sensor vegetation datasets with the TRMM 3B42v6 satellite-gauge
merged precipitation product, we find that NDVI is most suitable in
characterizing mean vegetation states, while dB provides the
most robust estimation of vegetation sensitivity to precipitation. By
combining these two products, essentially a synergistic use of optical-
microwave sensors, a new approach is proposed for deriving fractional
vegetation covers. A physical interpretation for how each product
responds to vegetation cover and its sensitivity to precipitation is provid-
ed to support the validity of the approach.

2. Materials and methods

2.1. Study area

The study domain (Fig. 1) is approximately 700 km wide and
2,800 km long, running southwest from the Ethiopia-Kenya border
(4° N) to the Botswana–South Africa border (24° S), and covers a
total area of approximately 2.4 million km2 (including large parts
of Kenya, Tanzania, Malawi, Zambia, Zimbabwe, and Botswana).
The mean annual precipitation (MAP) across the domain ranges from
200 to 2000 mm/yr (Fig. 1), resulting in widely varying distributions
of grass and tree fractions. The MAP is highest in the central portion,
and decreases to the southern and northern parts of the domain. The
land cover product from MODIS MCD12Q1 shows a similar gradient
with the central portion having more woodland, while the southern
portion havingmore shrubland and grassland, and the northern portion
being mainly composed of bare ground and grassland.

2.2. Datasets

Table 1 provides an overview of the datasets used in this study. Nor-
malized Difference Vegetation Index (NDVI) is the most extensively-
usedRSdata for vegetationmonitoring (Tucker et al., 2005). NDVI is for-
mulated based on the different absorption of chlorophyll-a and -b in
green leaves in the red (∼690 nm) and near-infrared (∼850 nm) fre-
quency bands (Glenn et al., 2008). This results in a unique vegetation
spectral feature distinctive of other land cover types (e.g. soil, water
and snow). NDVI is defined as:

NDVI ¼ ρNIR−ρRedð Þ= ρNIR þ ρRedð Þ ð1Þ

where ρRed and ρNIR refer to the reflectance at red and near-infrared fre-
quency, corresponding to AVHRR Band one (0.58–0.68 um) and Band
two (0.72–1.0 um) in this study. The Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI based on AVHRR measurements is

654 K. Guan et al. / Remote Sensing of Environment 124 (2012) 653–665



Download English Version:

https://daneshyari.com/en/article/4459037

Download Persian Version:

https://daneshyari.com/article/4459037

Daneshyari.com

https://daneshyari.com/en/article/4459037
https://daneshyari.com/article/4459037
https://daneshyari.com

