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Given the pace and scale of urban expansion in many parts of the globe, urban environments are playing an in-
creasingly important role in daily quality-of-life issues, ecological processes, climate, material flows, and land
transformations. Remote sensing has emerged as a powerful tool to monitor rates and patterns of urban expan-
sion, but many early challenges – such as distinguishing new urban land from bare ground – remain unsolved.
To deal with the high temporal and spatial variability as well as complex, multi-signature classes within settle-
ments, this paper presents a new approach that exploits multi-seasonal information in dense time stacks of
Landsat imagery using a multi-date composite change detection technique. The central premise of the approach
is that lands within/near urban areas have distinct temporal trajectories both before and after change occurs, and
that these lead to characteristic temporal signatures in several spectral regions. Themethod relies on a supervised
classification that exploits training data of stable/changed areas interpreted from Google Earth images, and a
‘brute force’ approach of providing all available Landsat data as input, including scenes with data gaps due to
the Scan Line Corrector (SLC) problem. Three classification algorithms (maximum likelihood, boosted decision
trees, and support vector machines) were tested for their ability to monitor expansion across five time periods
(1988–1995, 1996–2000, 2001–2003, 2004–2006, 2007–2009) in three study areas that differ in size, eco-
climatic conditions, and rates/patterns of development. Both the decision trees and support vector machines out-
performed the maximum likelihood classifier (overall accuracy of 90–93%, compared to 65%), but the decision
trees were superior at handling missing data. Adding transformed features such as band metrics to the Landsat
data stack increased accuracy 1–4%, while experiments with a reduced number of features (designed to mimic
noisy or missing data) led to a drop in accuracy of 1–9%. The methodology also proved particularly effective for
monitoring peri-urbanization outside the urban core, capturing >98% of village settlements.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

During the last two decades, we have made important strides to-
ward developing remote sensing methods that allow for the accurate
characterization of land cover change (Rogan & Chen, 2004), including
urban expansion (Chan et al., 2001). Mapping urban areas remains a
complex challenge, however, because of themany combinations of ma-
terials present and the variations in size/shape of urban features that
can lead to different ‘mixtures’within pixels (Small & Lu, 2006). Partic-
ularly troublesome is the fact that newly developed urban areas typical-
ly appear identical to fallow farmland at any given time, since both
exhibit high reflectance in the visible-infrared wavelengths. These is-
sues are further compounded in developing countries such as China
and India, since new development is often small, patchy in nature,
and located in peri-urban areas up to 100 km from the urban core
(Long et al., 2009; Webster, 2002).

The new wave of very high spatial resolution (VHR) data (1–4 m)
holds tremendous promise for resolving these issues, and methods
have emerged to characterize urban features with increased spatial de-
tail (Ban et al., 2010; Del Frate et al., 2007). However, the sparse cover-
age, limited scene availability, and lack of data prior to 2000 make
routine use of VHR data to map change impractical, and in some loca-
tions, impossible. Currently, medium resolution (20–30 m) datasets
such as Landsat and SPOT remain the best option for balancing the
trade-offs involving spatial detail, areal coverage, and availability of his-
torical data. The dense archives as well as routine collection of these
data (as opposed to VHR ‘on-demand’ collection) are also advantageous
when the rate of change is particularly rapid; in cities in China, for in-
stance, the scale and pace of urbanization must be monitored on the
order of years rather than on decades (Ma, 2004). Moreover, studies
that havemoved beyondmapping to link social and economic processes
to land use have shown that monitoring change for multiple periods
(i.e. three or more) is pivotal to understand the complex drivers of
urban morphology through space and time, and to forecast future
land use trends (Seto & Kaufmann, 2003).
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With the opening of the Landsat archive and new data sources com-
ing online, it is now possible to take advantage of the temporal dimen-
sion of satellite data to map urban change. The central premise of the
approach presented here is that the confusion between new urban
land and other land cover types can be resolved by including images
(a) from multiple seasons, as well as (b) from multiple years. While
there is likely to be confusion between bare ground and urban areas
during the course of one year, there is often a high probability that near-
by fields or open areas will be vegetated during at least one season of a
given year, and thus be ‘separable’ from built-up areas that are predom-
inantly non-vegetated year round. The temporal information frommul-
tiple years (case b) is also beneficial: expansion of built-up lands is often
unidirectional (i.e. once land is converted to urban uses, it is unlikely to
be converted back to farmland or forest), and thus images that follow
the date of change actually ‘confirm’ that an area has been developed.
Despite the clear advantage of seasonal, multi-year information, few
studies have exploited a multi-temporal approach to resolve urban re-
mote sensing issues.

The primary goal of this researchwas to develop, test, and validate a
multi-date composite change detection technique that is effective in
complex, heterogeneous urban and peri-urban environments. The
multi-date composite approach was specifically chosen because of its
superior accuracy for difficult change detection problems (Coppin et
al., 2004; Rogan & Chen, 2004), and because it provided a means to ex-
ploit dense time stacks of Landsat data now freely available from the
U.S. Geological Survey (USGS, 2011). Because of the complexity and
size of the datasets for a given study area (~35–50 Landsat scenes),
three supervised classification algorithms were tested: a traditional
maximum likelihood (ML) classifier, and two machine learning algo-
rithms, boosted decision trees (DT) (Quinlan, 1993), and support vector
machines (SVM) (Chang & Lin, 2001). The methods were tested for
their ability to isolate and correctly classify urban expansion for five
time periods spanning 1988 to 2009. To prevent the methodology
from being applicable in only one study area, the algorithms were test-
ed on three cities (Fig. 1) with different city sizes, diverse ecosystem
characteristics, as well as differential rates/patterns of urban develop-
ment. Specifically, the following questions guided this research:

(1) Which supervised classification algorithm performs best for
change detection in urban environments given dense temporal
data stacks?

(2) Does the addition of transformed features increase overall
accuracy?

(3) What is the impact of data quality and quantity on classifier
performance? and

(4) How well do multi-date change detection approaches work in
peri-urban environments given the small size/scale of settle-
ments (e.g. built-up areas ~1800 km2)?

To address these questions, the three algorithms were evaluated
using multiple criteria through a series of experiments that provided
different combinations of data features as input to the classifiers. Recent
applications that exploit dense, multi-temporal datasets have benefit-
ted from the inclusion of transformed data such as band maxima, min-
ima andmeans (Friedl et al., 2010; Hansen et al., 2008), thus question 2
was designed to test whether the addition of these features was benefi-
cial formonitoring urbanization. Question 3was included to specifically
test feature selection.Whilemachine learning algorithms can now han-
dle any number of input features, feature selection remains an impor-
tant concern if reduced-quality data are used as input (e.g. data with
clouds or missing observations), or if insufficient imagery is available
to create a dense stack. In the context of these issues, it is important
to understand which features may or may not be necessary to achieve
high accuracy results. Finally, question 4was designed to test the ability
of this approach to characterize small, piece-meal land development
and village settlements outside the city core.

2. Background: remote sensing of urban change, 1970s to today

Characterizing cities and towns with remotely sensed data has
been challenging since the field of Earth observation began nearly
50 years ago. As medium resolution satellite data (Landsat MSS) be-
came available in the 1970s, early applications relied on simple
band ratios, image thresholding, and image differencing to discern
broad-scale changes at the urban–rural fringe (Friedman & Angelici,
1979; Howarth & Boasson, 1983; Jensen & Toll, 1982; Todd, 1977).
Despite the apparent success of early approaches, the potential user
community – urban planners, developers, land managers, and social
scientists – did not immediately embrace the new technology. Rela-
tively few applications appear in the urban planning literature, due in
large part to the lack of spatial detail and thus inferior information content
of satellite data relative to aerial photos or ground surveys (Michalak,
1993; Ryznar & Wagner, 2001). While GIS technology has been widely
adopted in urban planning, the lack of reliable, easy-to-use methods
and dearth of remote sensing data with sufficient spatial resolution con-
tinue to impede widespread use of satellite-basedmaps of urban change.

A second user community of remote sensing-based maps of urban
change emerged in the 1990s–2000s, however. Disciplines such as cli-
matology (Romero et al., 1999), hydrology (Carlson & Arthur, 2000),
ecology (Robinson et al., 2005), and public health (Tatem & Hay,
2004) have embraced satellite data to understand the impacts of
urban expansion on environmental systems, as well as human health
and well-being. Moreover, there is a growing body of work looking at
urbanization and its effects from a regional to global perspective
(Mills, 2007; Pataki et al., 2006) which requires medium to coarse res-
olution large-area maps of urban extent and urban change (Schneider
et al., 2009, 2010). With these needs in mind, it is critical that the re-
mote sensing community continues to develop efficient methods and
to explore data sources for mapping urban growth and sprawl.

Although the user community has varied widely, the methods to
generate maps of urban growth have not deviated significantly from
early approaches that exploited spectral profiles of built-up areas and
newly developed land (Ehlers et al., 1990; Jensen & Toll, 1982;
Ulbricht & Heckendorff, 1998; Yang & Lo, 2002). Multi-date composite
approaches – those using images of two dates that are combined during
processing to produce a map of change – began to be used for urban ap-
plications in the 1990s (Ridd & Liu, 1998). Early multi-date techniques
included stacked principal component analysis (Deng et al., 2008; Li &
Yeh, 1998), change vector analysis (Chen et al., 2003), or stacked
multi-date composite classification (Schneider & Woodcock, 2008). To
handle the complexity of the urban environment, machine learning ap-
proaches were adopted in the late 1990s, including neural networks
(Dai & Khorram, 1999; Liu & Lathrop, 2002), boosted/bagged decision
trees (Rogan et al., 2003; Schneider et al., 2003, 2005), and support vec-
tor machines (Griffiths et al., 2010; Nemmour & Chibani, 2006). While
these algorithms provided increased class accuracies, isolating distinct
spectral signatures from the inherently mixed pixels in urban environ-
ments has remained problematic.

It is becoming increasingly clear that resolving class confusion in
urban change detection applications requires taking advantage of ‘do-
mains’ of remote sensing beyond spectral information, such as temporal,
spatial, or polarimetric domains. In this regard, data fusion approaches –
those that combine spectral profiles with either spatial information or
radar responses – have shown great potential. Spatial information has
been exploited through contextual classification and object-oriented pro-
cessing (An et al., 2007; Li et al., 2009),which tackle the urbanproblemby
usingpatches to reduce the variability in theurban spectral response. Tex-
tural information has also been testedwidely for urban change detection,
but with minimal improvement in detection of built-up areas (Gluch,
2002;Moller-Jensen, 1990). Data fusion has also includedmergingmulti-
spectral and radar data: visible to near-infrared wavelengths are used to
reveal the composition of the land, while the high backscatter of human-
made objects in radar data is used to discern settlement structure
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