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Spatiotemporal dimensionality refers to the continuum of spatial and temporal patterns in an image time se-
ries. Time-Space characterization refers to a way of representing this continuum of patterns as combinations
of spatial and temporal constituents — with a minimum of assumptions about the forms of the patterns. Pat-
terns can be related to processes through modeling. By combining characterization and modeling, two com-
plementary analytical tools can be used together so that each resolves a key limitation of the other. This study
describes a straightforward extension of Principal Component Analysis and Spectral Mixture Analysis to mul-
titemporal imagery and illustrates how characterization of the dimensionality and eigenstructure of the data
can inform modeling of the processes represented in the data. The relationships among spatiotemporal pro-
cesses can be represented as combinations of temporal endmembers in a temporal feature space where the
dimensions represent different components of the temporal patterns present in the data. The topology of
the feature space and the processes being modeled together inform the selection of temporal endmembers
and the structure of the model chosen to represent the processes. The dimensionality revealed by the char-
acterization can also provide a partial solution to the problem of endmember variability. The characterization
and modeling process is illustrated with the vegetation phenology of the Ganges–Brahmaputra delta using a
MODIS vegetation index time series. Additional applications and limitations of Time-Space characterization
and mixture modeling are further illustrated by comparing the eigenstructures and temporal feature spaces
of Landsat vegetation fraction and DMSP-OLS night light time series.

© 2012 Published by Elsevier Inc.

1. Introduction

Over the past 30+ years, broad interest in Earth surface process-
es has led to a variety of approaches to quantify remotely sensed
change. The diversity of approaches has resulted in multiple review
papers which have developed categorizations of the different ap-
proaches for change detection and their relative strengths and
weaknesses. (Coppin & Bauer, 1996; Coppin et al., 2004; Lu et al.,
2004). However, most of this work has focused on discrete change
detection. The more general problem of quantifying continuous spa-
tial and temporal changes has received less attention. The relatively
recent availability of large volumes of multitemporal imagery at
hectometer (e.g. MODIS) to decameter (e.g. Landsat) resolutions
now makes it more feasible to consider the related problem of spa-
tiotemporal (ST) analysis. Spatiotemporal analysis can be consid-
ered distinct from discrete change detection in the sense that it
simultaneously quantifies both temporal patterns and their spatial
distribution. Proposed approaches for spatiotemporal analysis in-
clude logistic function fitting (Zhang et al., 2006), wavelet decom-
position (Galford et al., 2008), Independent Component Analysis

(Ozdogan, 2010), trend and change decomposition (Verbesselt et
al., 2010), and temporal mixture modeling (Lobell & Asner, 2004;
Piwowar et al., 1998; deBeurs & Henebry, 2006). Most of these ap-
proaches involve some assumptions about the temporal patterns in
the data. However, with image time series the “Curse of Dimension-
ality” (Bellman, 1957) often arises in the challenge of determining
what spatial and temporal patterns are actually present in the
data and what method is best suited to quantifying them. Charac-
terization of high dimensional data in terms of its dimensionality
provides a way to represent the high dimensional information con-
tent of multitemporal imagery while managing the challenges
modeling the underlying processes.

Characterization of data can be considered the complement of
modeling. Modeling involves the representation of observations or pro-
cesses with a conceptual or mathematical simplification. (Gershenfeld,
1999). Forward modeling simulates a process given a set of parameters
while model inversion seeks optimal estimates of model parameters or
structure corresponding to a set of observations (Parker, 1994). Model-
ing generally involves assumptions about the functional form of the
processes represented by the data. The implicit assumptions are usually
that the functional form of the processes is known a priori and that the
model parameter estimates convey something about the processes. For-
wardmodeling of atmospheric effects with a radiative transfer model is
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an example of deterministic modeling (e.g. (Tanre et al., 1979)).
Estimation of phenological parameters by fitting logistic functions to
time series of vegetation indices is an example of model inversion
(e.g. (Zhang et al., 2006)). In contrast, characterization of data can
take the form of an exploratory data analysis and thereby makes less
rigid assumptions about processes and their representation in the
data. (Tukey, 1977). The assumption of a specific functional form is
not required for characterization. Identification of uncorrelated modes
of variability using Principal Component transform is a common exam-
ple of data characterization. (von Storch & Zwiers, 1999) The analogy to
supervised and unsupervised classification used by (Verbesselt et al.,
2010) to describe change detectionmethods can also be applied to spa-
tiotemporal analysis. Data characterization can be considered analo-
gous to unsupervised classification in that it identifies patterns in data
with few assumptions from the analyst. Data modeling is analogous to
supervised classification in that the result is strongly dependent on as-
sumptions and input from the analyst. Bothmodeling and characteriza-
tion have strengths and limitations. When used together they can
complement and inform each other.

The idea of spatiotemporal dimensionality provides a basis for
characterization of multitemporal imagery and the development of
spatiotemporal models. In the context of this study spatiotemporal
dimensionality refers to the structure of the continuum of spatial
and temporal patterns present in an image time series. The spatio-
temporal dimensionality of an image time series is related to the
number and combination of processes that can be distinguished at
different geographic locations through time. Before using data to
quantify or infer spatiotemporal processes, it is important to know
if and how these processes are represented in the data. Characteriza-
tion of multitemporal imagery can provide insights into how different
processes are represented by the spatial and temporal sampling of the
imagery. The purpose of characterization is not only to identify specif-
ic features but also to determine what can and cannot be distin-
guished in the data — with a minimum of assumptions. While
characterization can inform any of the modeling approaches
referenced previously, the continuous representation of spectral mix-
ture models is particularly well-suited to characterization in terms of
Principal Components.

This study presents an approach to characterizing and modeling
spatiotemporal processes in multitemporal imagery. The combined
approach of Time‐Space characterization and spatiotemporal model-
ing is developed using Empirical Orthogonal Function analysis and
Temporal Mixture Models. The approach follows a strategy developed
for spectral mixture analysis (Adams et al., 1986) but addresses some
important differences between spectral and spatiotemporal dimen-
sionality and the physical processes they represent. The Principal
Component (PC) transformation and resulting Empirical Orthogonal
Functions (EOFs) provide a tool for representing the spatiotemporal
dimensionality of an image time series in the form of uncorrelated
temporal patterns (EOFs) and their spatial distributions (PCs). The di-
mensionality and structure of the temporal feature space reveals the
dominant temporal patterns and the relationships among them. The
Temporal Mixture Model provides a tool for modeling and mapping
spatial relationships among the temporal patterns as processes.
When used together, each tool resolves a key limitation of the
other. The characterization of the dimensionality informs the design
of the mixture model while the use of the mixture model eliminates
the difficulty of direct interpretation of the individual EOFs. The spa-
tiotemporal (ST) dimensionality determined from the EOF analysis
also provides a potential solution to a principal challenge of mixture
modeling: endmember selection and variability. This is achieved
through a separation of high and low order variance as indicated by
results of the EOF analysis.

This study illustrates the combined use of characterization and
modeling with a combination of theory and application. The inten-
tion is to illustrate both strengths and limitations of the approach

by comparison of examples. The common theoretical basis and
mathematical similarities of EOF analysis and linear mixture model-
ing are discussed first. This is followed by a worked example of
characterization of the relatively well-posed problem of phenology
mapping with a time series of MODIS-derived vegetation index
images. This example is followed by a brief comparison of two
more challenging examples intended to highlight some effects of
differences in dimensionality and eigenstructure. The use of three
contrasting examples illustrates both the generality of the charac-
terization approach and the diversity of spatiotemporal structure
of different image time series. It also illustrates some limitations
of the use of purely statistical transformations in the representation
of high dimensional data.

2. Principal components and empirical orthogonal functions

PC transformations are commonly used to represent uncorrelated
modes of variance in high dimensional data. Different types of PC
transform are used to reduce the dimensionality of multispectral im-
agery (e.g. (Green et al., 1988; Lee et al., 1990; Singh & Harrison,
1985)) and to represent the topology of spectral feature spaces
(Adams et al., 1986; Crist & Cicone, 1984; Johnson et al., 1985;
Kauth & Thomas, 1976; Smith et al., 1985). Because spectral bands
are often correlated, PC transforms provide an efficient low dimen-
sional projection of the uncorrelated components of the spectral fea-
ture space. The same property applies to temporal dimensions. PC
transforms have also been used to represent uncorrelated patterns
in multitemporal imagery (Richards, 1984) (Eastman & Fulk, 1993;
Townshend et al., 1985) and for change detection (Byrne et al.,
1980; Fung & LeDrew, 1987). In meteorology and oceanography the
PC transformation provides the basis of Empirical Orthogonal Func-
tion analysis; a standard tool for analysis of spatiotemporal patterns
and processes. (see (Bretherton et al., 1992; Preisendorfer, 1988;
von Storch & Zwiers, 1999) for overviews).

The PC transform provides a very convenient tool for identifica-
tion of spatiotemporal patterns. By rotating the coordinate system
to align with orthogonal dimensions of uncorrelated variance, any
location-specific pixel time series Pxt contained in an N image time
series can be represented as a linear combination of temporal patterns,
F, and their location-specific components, C, as:

Pxt ¼
XN

i¼1

CixFit ð1Þ

where Cix is the spatial Principal Component (PC) and Fit is the
corresponding temporal Empirical Orthogonal Function (EOF) and i is
the dimension. The EOFs are the eigenvectors of the covariance matrix
that represent uncorrelated temporal patterns of variability within the
data. The PCs are the corresponding spatial weights that represent the
relative contribution of each temporal EOF to the corresponding pixel
time series Pxt at each location x. The relative contribution of each
EOF to the total spatiotemporal variance is given by the eigenvalues
of the covariance matrix.N is the number of discrete dimensions repre-
sented by the data; which may be greater, or less, than the true physi-
cal dimensionality of the process(es) imaged. Principal Components
are uncorrelated but not necessarily independent — unless the data
are jointly normally distributed. In systems where the same determin-
istic processes are manifest at many locations, but stochastic processes
are uncorrelated, the variance of the spatiotemporal structure of the
deterministic processes can be represented in the low order PC/EOF di-
mensions while the stochastic variance is represented in the higher
order dimensions (Preisendorfer, 1988). When a clear distinction can
be made, this can provide a statistical basis for separation of determin-
istic and stochastic components of an image time series. However, the
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