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ABSTRACT

During the past decade, procedures for forest biomass quantification from light detection and ranging
(LiDAR) data have been improved at a rapid pace. The scope of these methods ranges from simple regression
between LiDAR-derived height metrics and biomass to methods including automated tree crown delineation,
stochastic simulation, and machine learning approaches. This study compared the effectiveness of four
modeling techniques—linear mixed-effects (LME) regression, random forest (RF), support vector regression
(SVR), and Cubist—for estimating biomass in moderately dense forest (40-60% canopy closure) at both
tree and plot levels. Tree crowns were delineated to provide model estimates of individual tree biomass
and investigate the effects of delineation accuracy on biomass modeling. We used our previously developed
method (COTH) to delineate tree crowns. Results indicate that biomass estimation accuracy improves when
modeled at the plot level and that SVR produced the most accurate biomass model (671 kg RMSE per 380 m?
plot when forest plots were modeled as a collection of trees). All models provided similar results when esti-
mating biomass at the individual tree level (505, 506, 457, and 502 kg RMSE per tree). We assessed the effect
of crown delineation accuracy on biomass estimation by repeating the modeling procedures with manually
delineated crowns as inputs. Results indicated that manually delineated crowns did not always produce su-
perior biomass models and that the relationship between crown delineation accuracy and biomass estima-
tion accuracy is complex and needs to be further investigated.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Quantifying the amount of biomass within a forest stand is neces-
sary for property managers to make informed decisions about the
value and use of their forested land. Biomass quantification proce-
dures developed for remotely sensed data, especially from LiDAR
data, have been published at a rapid pace with an increasing com-
plexity and variety of techniques (Gleason & Im, 2011). LiDAR data
are well suited to biomass estimation, as point clouds generated
from forest canopies can accurately depict the physical characteristics
of the canopy surface. These physical characteristics are correlated
with biomass, and may be regressed against either diameter at breast
height (dbh) or biomass to obtain general LiDAR-biomass models
(Salas et al., 2010; Zhao et al., 2009). More recently, biomass quanti-
fication procedures have moved away from the regression between
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LiDAR-derived height metrics and biomass and increasingly include
methods for automated tree crown delineation, stochastic simulation,
and machine learning (Breidenbach et al., 2010; Muinonen et al.,
2001; Salas et al., 2010; Vauhkonen et al., 2010).

Biomass quantification models (regardless of method) must
model forests in practical units, which is accomplished either by esti-
mating biomass for individual trees or for semi-arbitrary areas of for-
est (i.e., plots). Identifying treetops is often the first step in locating
individual trees, as biomass is strongly correlated with crown width
and other crown dimensions that can be derived from treetop posi-
tion (Popescu, 2007). This requires accurate field data describing
the position and height of each tree within a study plot as well as
measurements of crown dimensions. Without such field data, tree-
tops may be identified from LiDAR data, often through the process
of local maxima filtering. There are numerous methods of local max-
ima detection involving varying search window sizes based on tree
height (Bunting & Lucas, 2006; Chen et al., 2006, 2007; Jang et al.,
2008; Kwak et al, 2010; Persson et al, 2002; Popescu, 2007;
Popescu & Wynne, 2004; Zhao et al., 2009). Crown dimensions should
be measured in the field to assess the accuracy of local maxima filter-
ing. If such field data are not available, crown dimensions may be
obtained through interpretation of image data or a LiDAR-generated
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canopy surface (Chen et al., 2006; Ke et al., 2010; Wang et al., 2004).
Accurately obtaining these crown dimensions is critical as these mea-
surements constitute the parameters from which biomass is derived.

The delineation of tree crowns is itself a robust and growing field of
study, and crown delineation methods are explained in greater detail
in Gleason and Im (2012). Of particular interest are those methods
that use the concept of tree crowns as geometric volumes, sometimes
called crown/canopy geometric volume (CGV) (Kato et al., 2009).
These methods associate LiDAR heights contained within a crown
footprint to determine CGV, and produce more accurate representa-
tions of volume when forest density is sparse or trees are isolated
(Brandtberg, 2007; Breidenbach et al., 2010; Chen et al., 2007; Kato
et al., 2009; Kwak et al., 2010). The CGV can extend downward from
the canopy surface to either the forest floor or height thresholds that
are either species-specific or LiDAR-derived. The concept of a CGV is
intuitive in its correlation to biomass, but has not yet been proven a
sufficient metric to act as a sole model predictor variable in dense
forests. Dense forest conditions often require multiple LiDAR
derived variables to estimate biomass, and the accuracy of crown
delineation/biomass estimation in such forests tends to be lower for
complex canopy surfaces than homogenous forests (Chen et al., 2007).

An alternative to biomass estimation at the individual tree level is
biomass estimation at the plot level. Studies employing this tech-
nique frequently characterize LiDAR data through statistical descrip-
tions of canopy height, number of LiDAR returns, and ratios of
returns. These descriptors can also be used to estimate other forest
biophysical parameters (Anderson et al., 2006; Donoghue et al.,
2007; Hawbaker et al., 2010; Hyde et al,, 2006; Ioki aet al., 2010;
Naesset, 2004; Naesset & @kland, 2002; Popescu et al., 2002, 2004;
Solberg et al., 2010). Modeling biomass using this approach requires
reference biomass data measured at the plot level, which may intro-
duce bias into the modeling procedure. If reference biomass was cal-
culated including snags, woody debris, and understory vegetation,
LiDAR first returns may not penetrate denser canopy to a sufficient
degree to accurately describe these features (Nasset, 2005).

There are multiple methods used to estimate biomass/tree vol-
ume, which are varied in their assumptions and complexity. Sophisti-
cated regression techniques take into account bias and the correlation
of predictor variables (e.g., linear mixed effects regression, geograph-
ically weighted regression) rather than the somewhat rigid assump-
tions of ordinary least squares regression (Hudak et al., 2008;
Powell et al., 2010; Salas et al., 2010; Yu et al.,, 2011; Zhao et al,,
2009). When comparing statistical regression models, Salas et al.
(2010) found that the linear mixed effects (LME) model significantly
outperforms geographically weighted regression, ordinary least
squares regression, and generalized least squares regression when es-
timating tree diameter from LiDAR data. Such studies provide evi-
dence that regressing LiDAR-derived variables with field data is an
effective method for estimating biomass, yet there is a large set of
assumptions and site-specific considerations that must be made
for each study. Zhao et al. (2009) also note that scale issues often
affect the performance of biomass estimation regression procedure:
i.e.,, models are built to output biomass at a specific plot size and
changing this plot size may affect the accuracy of results. To reduce
the effects of regression assumptions on plot scale biomass estimation
(population assumptions that do not represent the heterogeneity of
forest stands), machine learning techniques such as random forest
(RF) and most similar neighbor (MSN) may be used (Breidenbach et
al., 2010; Muinonen et al., 2001; Vauhkonen et al., 2010).

This study aims at evaluating machine learning approaches—RF,
support vector regression (SVR), Cubist ® regression trees—of forest
biomass estimation at both individual tree and plot levels using
high posting density airborne LiDAR data. Unlike other biomass esti-
mations that estimate tree diameter or volume from LiDAR data and
then calculate biomass from this prediction, this study estimates bio-
mass using field-measured biomass to inform the models. Such a

choice allows for combined species modeling, as dbh dependent
species-specific allometry is applied a priori. This modeling also pro-
vides more flexibility and may increase the accuracy of estimating de-
ciduous biomass, which is traditionally more difficult to quantify than
coniferous biomass. The objectives of this study are to (1) delineate
individual trees from airborne LiDAR data, (2) assess impacts of this
delineation on biomass estimation, (3) estimate biomass through
four different models, LME, RF, SVR and Cubist, and (4) compare the
output of these four models for estimating biomass of all trees at
the individual tree and the plot level, paying particular attention to
the effects of segregating trees on a coniferous/deciduous divide.
The different modeling scenarios for plot/tree combinations are re-
ferred to as ‘schemes,” and are described fully in the methods section.

2. Study area and reference data
2.1. Study area

The study was conducted within the 1700 ha Heiberg Memorial
Forest, located in Tully, NY and managed by State University of New
York College of Environmental Science and Forestry (SUNY ESF)
(Fig. 1). The College maintains continuous forest inventory (CFI)
plots within the forest, and these plots were inventoried in summer
of 2010, seasonally coincident with an August 10th, 2010 LiDAR col-
lection. Each CFI plot has a radius of 11 m and is located on a 14
chain grid throughout Heiberg Forest. The plots contain coniferous
and deciduous trees common to Upstate New York. Table 1 presents
a summary of the CFI plots and the field data which were recorded
for each tree with a dbh greater than 9.14 cm.

2.2. LiDAR data

Discrete multiple-return LiDAR data for this study was acquired on
August 10th, 2010 from an airborne ALS60 sensor (Table 2). Raw laser
data was post-processed using the TerraSolid software suite with
manual editing by the vendor (Kucera International, Inc.), and
resulted in the creation of a canopy point cloud and a bare earth
point cloud. Both point clouds were then converted to raster surface
data (cell size 0.25 m) in ArcGIS 9.3 using inverse distance weighted
(IDW) interpolation, which is a valid surface creation method for
LiDAR data with high point density (Popescu et al., 2002). Point den-
sity for our study varied across the study site, with an average point
density of 12.7 pts/m?.

2.3. Reference data

Reference data for this study include ground inventory of tree spe-
cies, dbh, and height. Tree height data was collected in August of 2010
using a Haglof Vertex III hypsometer, and these data were used to vi-
sually examine the LiDAR-derived canopy surface data. Leaf area
index (LAI) was measured at the plot level using an ACCUPAR LP80
Ceptometer. Forty LAl measurements per plot were averaged to arrive
at the LAI used for biomass estimation.

The field team relied on the allometric equations provided by the
USDA Forest Service to provide reference biomass levels (Jenkins et
al., 2004). These generalized equations were developed for all decidu-
ous and coniferous species in the United States via a thorough canvas
of published allometric equations and previous reviews on the subject
conducted in 2003 by the same authors. The Jenkins et al. (2003) equa-
tions give two parameters that fit their biomass equation, as well as the
number of data points used to generate such an equation and the max-
imum dbh for which the formulation is applicable. These national scale
formulations were adopted for this research because the goal was to
investigate a transferable model that requires minimal region-specific
information, and because the reported root-mean-squared-errors
(RMSEs) of the Jenkins et al. (2003) equations provide evidence that
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