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National forest inventories report estimates of parameters related to forest area and growing stock volume
for geographic areas ranging in size from municipalities to entire countries. Landsat imagery has been
shown to be a source of auxiliary information that can be used with stratified estimation to increase the pre-
cision of estimates, although the increase is greater for estimates of forest area than for estimates of growing
stock volume. The objective of the study was to assess the utility of lidar-based stratifications for increasing
the precision of mean proportion forest area and mean growing stock volume per unit area. Stratifications
based on nonlinear logistic regression model predictions of volume obtained from lidar data reduced vari-
ances of mean growing stock volume estimates by factors as great as 3.2 and variances of mean proportion
forest area estimates by factors as great as 1.5.

Published by Elsevier Inc.

1. Introduction

National forest inventories (NFI) report estimates of parameters
related to forest area and growing stock volume for geographic areas
such as counties, states, and provinces based on data collected from
arrays of field plots. Because of budgetary constraints and natural vari-
ability among plots, sufficient numbers of plots frequently cannot be
measured to satisfy precision guidelines for the estimates of some pa-
rameters unless the estimation process is enhanced using auxiliary
information. Remotely sensed data has been shown to be a source of
auxiliary information that can be used with stratified estimation to in-
crease the precision of estimates.

1.1. Stratified estimation

Stratified estimation is a statistical technique that can be used to
increase the precision of estimates without increasing sample sizes.
The essence of stratified estimation is to aggregate observations of the
response variable into groups or strata that are more homogeneous
than the population as a whole. The population mean and its variance
are estimated as weighted means of within-strata means and variances
where the weights are based on strata sizes.

If the stratification is accomplished prior to sampling and the
within-stratum variances are known or can be easily estimated, then
greater precision may be achieved by selecting within-strata sampling
intensities to be proportional to within-strata variances (Cochran,
1977). However, NFIs often use permanent plots whose locations are

* Corresponding author. Tel.: +1 651 649 5174; fax: +1 651 649 5285.
E-mail address: rmcroberts@fs.fed.us (R.E. McRoberts).

0034-4257/% - see front matter. Published by Elsevier Inc.
doi:10.1016/j.rse.2012.07.002

based on systematic grids or tessellations and use sampling intensities
that are constant over large geographic areas, if not the entire popula-
tion. In such cases, even though stratified sampling is not possible, con-
siderable increase in precision may still be achieved simply by using
post-sampling stratification, also characterized as post-stratification.

1.2. Applications

Aerial photography served as the earliest source of remotely
sensed information for constructing stratifications. With this ap-
proach, characterized as double sampling for stratification, an exten-
sive sample of photo plots on aerial photographs is interpreted, photo
plots are assigned to strata using ocular methods, and strata weights
are estimated as proportions of photo plots assigned to strata. Field
crews then visit a subset of the photo plots and observe and measure
plot attributes. Plots are assigned to the strata of their corresponding
photo plots. Estimates based on these data are then calculated using
stratified estimation techniques (Cochran, 1977). Examples of double
sampling for stratification using aerial photography are provided by
Bickford (1953, 1960), Lawrence and Walker (1954), Kendall and Sayn-
Wittgenstein (1961), Macpherson (1962), and Poso (1972), and the
topic is addressed in textbooks such as Loetsch and Haller (1964) and
Gregoire and Valentine (2008).

More recently, satellite imagery has served as a source of informa-
tion for constructing stratifications. With this approach, image pixels
with centers in the population are classified with respect to land cover
attributes, and the classes or aggregations of the classes are then used
as strata. Strata weights are calculated as the proportions of pixels in stra-
ta, and plots are assigned to strata on the basis of the strata assignments
of the pixels containing the plot centers. In Finland, Poso et al. (1984,
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1987), Poso et al. (1987) derived stratifications from unsupervised
classifications of satellite imagery. In the United States of America
(USA), Hansen and Wendt (2000) constructed strata by collapsing
the classes of the Gap Analysis Program (GAP) classification (Scott
et al., 1993) into forest and non-forest strata and then constructing
forest edge and non-forest edge strata along forest/non-forest
boundaries. Two sets of stratified estimates of forest area and grow-
ing stock volume for the states of Illinois and Indiana, USA, were
compared: 1986 estimates obtained using a double sampling for
stratification approach based on first-phase interpretation of aerial pho-
tographs and 1998 estimates using the GAP classification as basis for
stratification. Although variances of estimates for the image-based
stratification were slightly larger than for the photo-based stratification,
the image-based stratification was much more consistent and much
less costly to construct.

Also in the USA, McRoberts et al. (2002a) used the 1992 National
Land Cover Dataset (NLCD) (Vogelmann et al.,, 2001) to construct
strata similar to those used by Hansen and Wendt (2000). Variances
of estimates of mean proportion forest area for the American states
of Indiana, lowa, Minnesota, and Missouri were reduced by factors
ranging from 1.72 to 3.22. For two study areas in Minnesota,
McRoberts et al. (2002b) used a nearest neighbors approach to pre-
dict proportion forest from Landsat imagery with 30-m x 30-m
resolution and NFI plot observations of forest/non-forest. Classes of
proportion forest predictions were then aggregated into four strata
for use in a post-stratification approach. For estimating mean pro-
portion forest area, variances were reduced by factors in the range
4.3-5.6. For study areas in the American states of Minnesota and
Wisconsin, McRoberts et al. (2006) used a logistic regression model to
predict the probability of forest for Landsat pixels. Classes of the proba-
bility of forest were then aggregated into strata for a similar approach to
post-stratification. Reductions in variances of estimated mean propor-
tion forest were in the range 3.6-5.9 and reductions for growing stock
volume were in the range 1.3-2.5.

Liknes et al. (2004) and Holden et al. (2005) investigated the effec-
tiveness of 250-m x 250-m resolution MODIS-based maps as bases
for stratifications. Liknes et al. (2004) focused on stratified estimation
of mean proportion forest area and found that although the MODIS-
based stratified estimates were more precise than the simple random
sampling estimates, they were less precise than Landsat-based strati-
fied estimates. The latter result was attributed to the finer spatial reso-
lution of the Landsat imagery. Holden et al. (2005) used a MODIS-based
biomass map as the basis for stratified estimation of biomass for 11
states in the north central region of the USA. The map was only margin-
ally effective at increasing the precision of biomass estimates. This
result can be attributed to a weak relationship between plot-level bio-
mass and corresponding MODIS-based predictions. The weakness of
the relationship can, in turn, be attributed to the difficulty of predicting
below-canopy attributes such as biomass from spectral data that
responds primarily to canopy-level attributes. In addition, the spatial
size difference between the 62,500-m? MODIS pixels and the approxi-
mately 672-m? plots was likely also a contributing factor.

The important lessons from the Liknes et al. (2004), Holden et
al. (2005), and the McRoberts et al. (2002a,b, 2006) studies are that
the effectiveness of stratifications based on spectral information from
satellite imagery is much greater for canopy-level attributes such as
mean proportion forest area than for below-canopy attributes such as
mean biomass per unit area and when using imagery whose resolution
is closer to the plot size.

Recent reports of strong relationships between below-canopy for-
est attributes such as growing stock volume and lidar metrics suggest
that lidar-based stratifications may be effective for increasing the
precision of estimates of parameters related to growing stock volume,
biomass, and carbon. For example, Nesset (2002) reported that 80-
93% of the variability in field measured volume could be explained
by models that use lidar metrics, and Naesset and Gobakken (2008)

reported that 88% of the variability in above-ground biomass could
be explained with models using lidar metrics. Similar results have
also been reported for multiple other studies including Frazer et al.
(2011), Li et al. (2008), and Zhao et al. (2009).

1.3. Objectives

The objective of the study was to assess the utility of lidar data as
the basis for post-stratifications for increasing the precision of estimates
of mean proportion forest area (FOR) and mean growing stock volume
(m3/ha) (VOL).

2. Data

The study area is in Hedmark County, Norway, mostly in Amot
and Stor-Elvdal municipalities (Fig. 1). The study area consists of
2385 km? and features altitudinal variations ranging from 204 to
1134 m above sea level (asl) with a mean of 570 m asl. The dominant
tree species are Norway spruce (Picea abies (L.) Karst.) and Scots pine
(Pinus sylvestris L.). For the period 1961-1990, mean January and July
temperatures were —11° and 13° Celsius, respectively (Norwegian
Meteorological Institute, 2012).

2.1. Lidar data

A PA31 Piper Navajo aircraft carried the Optech ALTM 3100 laser
scanning system. The laser scanner data were acquired between 15
July 2006 and 12 September 2006 from a height of approximately
1700 m with average speed of 75 ms™!. The pulse repetition fre-
quency was 50 kHz, and the scan frequency was 31 Hz. The maxi-
mum scan angle was 16°, which corresponded to an average swath
width of approximately 975 m. Pulses transmitted at scan angles
that exceeded 14° were excluded from the final dataset. The mean foot-
print diameter was approximately 50 cm, and the average point density
was 0.7 m—2.

The initial processing of the data was accomplished by the con-
tractor (Blom Geomatics, Norway). Planimetric coordinates and ellip-
soidal height values were computed for all echoes. Ground echoes
were found and classified using the progressive Triangular Irregular Net-
work (TIN) densification algorithm (Axelsson, 2000) of the TerraScan
software (Anonymous, 2005). A TIN was created from the planimetric
coordinates and corresponding heights of the laser echoes classified as
ground points. The ellipsoidal height accuracy of the TIN model was
expected to be around 20-30 cm (Kraus & Pfeifer, 1998; Reutebuch et
al., 2003). The heights above the ground surface were calculated for
all echoes by subtracting the respective TIN heights from the height
values of all echoes recorded. The ALTM 3100 sensor is capable of re-
cording up to four echoes per pulse. Data for only single echoes or
the first of multiple echoes were used. For each plot and population
unit, height distributions were estimated for heights greater than 2 m.
Echoes with heights less than 2 m were considered to have been
reflected from non-tree objects such as shrubs, grass, or the ground.

The study area was tessellated into population units consisting of
square grid cells with the same 250-m? area as the field plots
(Section 2.2). For each plot and population unit, heights corresponding
to the 10th, 20th, ..., 100th percentiles of the distributions were de-
noted hy, ho, ..., hqo, respectively. In addition, mean heights and coeffi-
cients of variation for the canopy height distributions were calculated.
Canopy densities were also calculated as the proportions of echoes
with heights greater than 0%, 10%, ..., 90% of the 95th height percentile
and denoted d, dy, ..., do, respectively (Gobakken & Nasset, 2008).

2.2. Field data

The field measurements were obtained from Norwegian NFI field
plots. The Norwegian NFI is a continuous forest inventory system with
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