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Remote sensing models based on light use efficiency (LUE) provide promising tools for monitoring spatial
and temporal variation of gross primary production (GPP) at regional scale. In most of current LUE-based
models, maximal LUE (εmax) heavily relies on land cover types and is considered as a constant, rather than a
variable for a certain vegetation type or even entire eco-region. However, species composition and plant
functional types are often highly heterogeneous in a given land cover class; therefore, spatial heterogeneity
of εmax must be fully considered in GPP modeling, so that a single cover type does not equate to a single εmax

value. A spatial dataset of εmax accurately represents the spatial heterogeneity of maximal light use would be
of significant beneficial to regional GPP models. Here, we developed a spatial dataset of εmax by integrating
eddy covariance flux measurements from 14 field sites in a network of coordinated observation across
northern China and satellite derived indices such as enhanced vegetation index (EVI) and visible albedo to
simulate regional distribution of GPP. This dynamic modeling method recognizes the spatial heterogeneity of
εmax and reduces the uncertainties in mixed pixels. Further, we simulated GPP with the spatial dataset of εmax

generated above. Both εmax and growing season GPP show complex patterns over northern China that reflect
influences of humidity, green vegetation fractions, and land use intensity. “Green spots” such as oasis
meadow and alpine forests in dryland and “brown spots” such as build-up and heavily degraded vegetation
in the east are clearly captured by the simulation. The correlation between simulated GPP and EC measured
GPP indicate that the simulated GPP from this new approach is well matched with flux-measured GPP. Those
results have demonstrated the importance of considering εmax as both a spatially and temporally variable
values in GPP modeling.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Gross primary production (GPP), the flux of carbon into ecosys-
tems via photosynthetic assimilation, is an important variable in
global carbon cycle and a key process in land surface–atmosphere
interactions (Coops et al., 2009; Jung et al., 2008). Continuous
monitoring of spatial and temporal variations of GPP at regional
scale with high accuracy can provide reliable data for carbon-related
climate change studies and useful information for ecosystem
management. Eddy covariance (EC) flux measurement is one of the
best micrometeorological methods for estimating CO2, water, and
energy exchange between the atmosphere and terrestrial ecosystems
(Li et al., 2007). It can provide valuable information on daytime GPP
by measuring net ecosystem exchange (NEE) and estimating daytime
ecosystem respiration at site level (Falge et al., 2002; Falge et al.,
2002). Unfortunately, regional extrapolation of field based GPP

measurements is still a challenging task due to the high spatial and
temporal variability of terrestrial ecosystems across complex land-
scapes and regions (Maselli et al., 2009).

The application of satellite remote sensing has greatly enhanced
global scale observations of vegetation dynamics, and has played an
increasingly important role in estimation of GPP and net primary
production (NPP) over heterogeneous landscapes. Remote sensing
models based on light use efficiency (LUE) integrate satellite
observations and ground measurements provide promising tools for
regional GPPmonitoring (Chasmer et al., 2009; Garbulsky et al., 2008;
Landsberg &Waring, 1997; Potter et al., 1993; Prince & Goward, 1995;
Running et al., 2004; Veroustraete et al., 2002; Xiao et al., 2004; Xiao
et al., 2004). However, in many current LUE-based models, maximal
LUE (εmax) heavily relies on vegetation types and is considered as a
constant, rather than a variable for a certain vegetation type or even
entire eco-region. One obstacle of simulating regional GPP with LUE-
based models is the uncertainties in distinguishing real world
vegetation types. For most moderate to coarse resolution satellite
data (such as MODerate resolution Imaging Spectroradiometer
(MODIS)), there exist many mixed pixels with spatial resolutions
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ranging from 250 m to 1000 m. This may contain errors in the as-
signment of land cover type to a mixed pixel. Moreover, εmax is a
changing variable, and its spatial variation and temporal changes
are largely influenced by land use change, disturbance history, and
different successional stages of vegetation (Yan et al., 2009). So, it is
illogical either to employ a fixed εmax to represent certain biome or to
reconcile one pixel as one fixed biome pattern. Detailed analyses of
the spatial heterogeneity of εmax at regional scale are badly needed for
GPP modeling.

Deriving εmax from remotely sensed data could greatly improve
the ability of LUE-based model in estimating GPP in regions with
heterogonous land cover. A large number of studies have demon-
strated positive relationships between vegetation indices (VIs) and
LUE (Cheng et al., 2009; Drolet et al., 2005, 2008; Jenkins et al., 2007;
Nakaji et al., 2007). In this study, EVI (enhanced vegetation index)
was chosen from VIs to simulate LUE considering its great sensitivity
to both low and high biomass regions while minimizing soil and
atmosphere influences on vegetation monitoring (Huete et al., 2002).
Meanwhile, albedo is considered as the primary factor determining
the fraction of photosynthetically active radiation (PAR) absorbed
(Tian et al., 2004). Albedo modifies the amount of PAR and thus
strongly affects vegetation productivity in a given region (Sellers et al.,
1997). Here, we chose visible albedo (and combined with EVI) to
calculate LUE considering its relevance to photosynthetic active
radiation ranging from 400 nm to 800 nm. Consequently, we
integrated remote sensing products including maximal EVI and
minimal visible albedo of growing season with EC flux measurements
to simulate maximal LUE (εmax) for GPP modeling.

In this paper, we simulated GPP in northern China with a gridded
parameter of εmax retrieved from remote sensing data with full
consideration of its heterogeneous nature. We firstly used a dynamic
modeling method that combines maximal EVI and minimal visible
albedo of growing season to retrieve εmax for each pixel in the region.
Compared to the treatment of εmax in most current LUE-basedmodels,
this method considers εmax as a variable at pixel scale and doesn't
solely rely on land cover types. The εmax we retrieved was also
compared with those used for MODIS GPP algorithm (MOD17). Then,
we simulated GPP in growing season of 2008 and validated the results
with GPP retrieved from flux measurements. Finally, we analyzed the
spatial patterns of εmax and sum of GPP in growing season over the
study area. The results of this study will likely improve carbon cycle
modeling by capturing finer patterns with an integrated method of
remote sensing and eddy flux measurements.

2. The study site and data

2.1. Site description

Field measured GPP, air temperature, solar radiation, and PAR were
collected from the 14 field EC flux sites under a coordinated enhanced
observation project in arid and semi-arid regions in northern China
(Table 1). These 14 flux sites represent the dominant vegetation/land
cover types in the region: temperate grassland, cropland, deciduous
broadleaf forests, and evergreen needleleaf forests. For croplands, all the
5 sites (including Jinzhou (JZ), Linze (LZ), Tongyu-Crop (TYC), Dingxi
(DX) and Yingke (YK)) are irrigated with intensive management. JZ, LZ
and YK are planted with maize (Zea mays), TYC is planted with
sunflower (Helianthus annuus) and DX is planted with wheat (Triticum
aestivum). For forests, Dayekou (DYK) is a sub-alpine evergreen
needleleaf forest site, while Changwu (CW) and Miyun (MY) are
deciduous broadleaf forest sites. For grasslands, Arou (AR) is a sub-
alpine meadow site, Zhangye (ZY) represents steppe desert, Tongyu-
Grass (TYG) represents degraded meadow steppe, Yuzhong (YZ)
represents typical steppe, Dongsu (DS) represent desert steppe, while
Naiman (NM) is a sandy grassland site.

2.2. Field measurements and data quality control

The EC systems, which were mounted above canopy from 1 to
25 m (Table 1), consist of a three-dimensional sonic anemometer
(Model CSAT3, Campbell Scientific Inc., Logan, Utah, USA except for LZ
and CW which adopt WindMaster from Gill Instruments Ltd.
Lymington, Hampshire, UK) and an open-path fast response infrared
gas analyzer (IRGA, Model LI7500, LI-Cor Inc., Lincoln, Nebraska, USA).
The raw data were recorded at a rate of 10 Hz, and the computations
were done for each 30 min period by a Data-Logger (Model CR5000,
Campbell Scientific Inc., Logan, Utah, USA). Intensive calibration was
done weeks before the coordinated enhanced observation period
(July to September, 2008) to ensure proper performance of the
instruments and to make those site scale data comparable.

Webb, Pearman and Leuning (WPL) term (Webb et al., 1980) that
accounts for errors introduced by fluctuations in water vapor density
and temperature was applied to correct net ecosystem exchange
(NEE) time series directly measured by EC. The periods of half-hour
bad data caused by water vapor condensation and raindrops on the
windows of the open-path infrared gas analyzer were removed. To fill
small blocks (less than a few hours) of missing and bad data, a linear
interpolation method was applied to each time series. Larger gaps
were filled with values derived from the Michaelis–Menten equation
of PAR (Falge et al., 2001). More details on data quality control have
been described by Liu et al. (2008). NEE measured by EC in nighttime
is treated as ecosystem respiration since photosynthesis is almost
zero. The daytime respiration is calculated with the Q10 of respiration
in nighttime when ECmeasures gross respiration without considering
photosynthesis (Falge, Baldocchi, et al., 2002; Falge, Tenhunen, et al.,
2002). GPP was finally estimated as NEE minus estimated daytime
ecosystem respiration (RDay-eco):

GPP = − NEE � RDay�eco

� �
: ð1Þ

Then, daily GPP were accumulated to 8-day integrated GPP to be
consistent with MODIS 8-day products.

Table 1
Main characteristics of the 14 flux sites in the study region.

Site Vegetation
type

Location EC above
canopy (m)

Elevation
(m)

Precipitation
(mm)

JZ Cropland
(maize)

41°09 N, 121°12E 1 17 463

YK Cropland
(maize)

38°51 N, 100°15E 1 2859 382

LZ Cropland
(maize)

39°20 N, 100°25E 1 1382 376

TYC Cropland
(sunflower)

44°35 N, 122°52E 2 151 404

DX Cropland
(wheat)

35°33 N, 104°36E 2 1912 505

ZY Steppe desert 39°05 N, 100°16E 2 1483 353
DS Desert steppe 44°05 N, 113°34E 2 990 287
TYG Degraded

meadow
steppe

44°34 N, 122°55E 2 151 404

AR Sub-alpine
meadow
steppe

38°03 N, 100°28E 2 3033 396

YZ Typical steppe 35°57 N, 104°08E 2 1968 382
NM Desert steppe 42°56 N, 120°42E 2 371 405
DYK Evergreen

needleleaf
forest

38°32 N, 100°15E 10 2823 360

CW Deciduous
broadleaf forest

35°15 N, 107°41E 20 1220 540

MY Deciduous
broadleaf forest

40°38 N, 117°19E 25 350 584
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