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Greenhouse gas inventories and emissions reduction programs require robust methods to quantify carbon
sequestration in forests. We compare forest carbon estimates from Light Detection and Ranging (Lidar) data and
QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees.
We conducted the tests at two sites in California: (1) 59 km2 of secondary and old-growth coast redwood
(Sequoia sempervirens) forest (Garcia–Mailliard area) and (2) 58 km2 of old-growth Sierra Nevada forest (North
Yuba area). Regression of aboveground live tree carbon density, calculated from field measurements, against
Lidar heightmetrics and againstQuickBird-derived tree crowndiameter generated equationsof carbondensity as
a function of the remote sensing parameters. Employing Monte Carlo methods, we quantified uncertainties of
forest carbon estimates from uncertainties in field measurements, remote sensing accuracy, biomass regression
equations, and spatial autocorrelation. Validation of QuickBird crown diameters against field measurements of
the same trees showed significant correlation (r=0.82, Pb0.05). Comparison of stand-level Lidar height metrics
with field-derived Lorey's mean height showed significant correlation (Garcia–Mailliard r=0.94, Pb0.0001;
North Yuba R=0.89, Pb0.0001). Field measurements of five aboveground carbon pools (live trees, dead trees,
shrubs, coarse woody debris, and litter) yielded aboveground carbon densities (mean±standard error without
Monte Carlo) as high as 320±35Mg ha−1 (old-growth coast redwood) and 510±120 Mg ha−1 (red fir [Abies
magnifica] forest), as great or greater than tropical rainforest. Lidar and QuickBird detected aboveground carbon
in live trees, 70–97% of the total. Large sample sizes in theMonte Carlo analyses of remote sensing data generated
low estimates of uncertainty. Lidar showed lower uncertainty and higher accuracy than QuickBird, due to high
correlation of biomass to height and undercounting of trees by the crown detection algorithm. Lidar achieved
uncertainties of b1%, providing estimates of aboveground live tree carbon density (mean±95% confidence
interval with Monte Carlo) of 82±0.7 Mg ha−1 in Garcia–Mailliard and 140±0.9 Mg ha−1 in North Yuba. The
method that we tested, combining field measurements, Lidar, andMonte Carlo, can produce robust wall-to-wall
spatial data on forest carbon.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A growing forest naturally removes greenhouse gases from the
atmosphere and reduces the magnitude of global climate change.
Global vegetation and soils removed carbon from the atmosphere at a
rate (mean±66% confidence interval) of 4.7±1.2 Gt y−1 in 2008,
compared to fossil fuel emissions of 8.7±0.5 Gt y−1 and deforestation

emissions of 1.2±0.7 Gt y−1 (Intergovernmental Panel on Climate
Change [IPCC], 2007; Le Quéré et al., 2009). Parties to the United
Nations Framework Convention on Climate Change (UNFCCC) and
jurisdictions such as the State of California, USA, conduct national and
sub-national greenhouse gas inventories. Furthermore, the UNFCCC
and other institutions have established greenhouse gas emissions
reduction programs with credits for forest conservation, afforestation,
and reforestation. Greenhouse gas inventories and emissions reduc-
tion programs require scientifically robust methods to quantify forest
carbon storage over time across extensive landscapes.

Monitoring forest carbon in forests with high spatial variation of
tree density and species composition poses major challenges (Fahey
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et al., 2009). The financial cost of forest inventory can render it
infeasible as the sole method for estimating the forest carbon of
extensive areas. In addition, forest inventory programs that are
funded sufficiently for large-scale forest carbon monitoring, such as
the Forest Inventory and Analysis (FIA) program of the United States
Department of Agriculture (USDA) Forest Service, use large admin-
istrative areas as units of analysis (Woodbury et al., 2007), masking
local variability.

Remote sensing, calibrated by field measurements, addresses these
challenges.Methods commonly calculate forest carbon as the product of
surface areas of land cover types, classified by satellite systems with
moderate spectral or spatial resolutions, e.g. Landsat and MODIS, and
mass of carbon per unit area (carbon density), derived from field
measurements of trees and allometric equations, summed over all land
cover types (Achard et al., 2004; Blackard et al., 2008; DeFries et al.,
2007; Potter et al., 2008; Saatchi et al., 2007). The number of land cover
types that satellites with moderate spectral or spatial resolutions can
accurately discriminate, generally five to twenty classes (Bartholomé &
Belward, 2005; Loveland et al., 2000; Sánchez-Azofeifa et al., 2009),
limits the possible carbon density of each pixel to a few discrete values.

In contrast to satelliteswithmoderate spectral or spatial resolutions,
high-resolution Lidar and high-resolution satellites such as QuickBird,
IKONOS, WorldView, and GeoEye sense physical dimensions of trees to
which aboveground biomass directly correlates. With these systems,
forest carbon content equals the product of the area and the carbon
density of each pixel, where carbon density is calculated by applying
allometric equations to field measurements of individual trees and
correlated to canopy height metrics estimated by Lidar or tree crown
diameter estimated by high-resolution satellite data. This method
generates raster coverage of the spatial distribution of forest carbon
density with continuous values.

Field research has demonstrated the accuracy of Lidar estimates of
canopy height (Andersen et al., 2006; Magnussen & Boudewyn, 1998;
Næsset, 1997; 2009) and high correlation of Lidar height metrics to
field-measured aboveground biomass (Boudreau et al., 2008; Drake et
al., 2002; Hurtt et al., 2004; Hyde et al., 2006; Lefsky et al., 1999; 2005;
Næsset & Gobakken, 2008) and forest carbon density (Balzter et al.,
2007; Patenaude et al., 2004). Financial and expertise requirements of
Lidar methods have prevented their widespread adoption for forest
carbon monitoring in tropical countries, although it has been tested in
the Brazilian Amazon (Asner, 2009). Lidar has produced more accurate
estimates of forest biomass than Landsat (Lefsky et al., 2001), high
spectral resolution sensors (Lefsky et al., 2001), and synthetic aperture
radar (Sexton et al., 2009). Direct comparison of Lidar tohigh-resolution
satellites for forest carbon monitoring remains an area for further
investigation because these two systems are potential tools for national

greenhouse gas inventories (Bickel et al., 2006) and reducing emissions
from deforestation and degradation (REDD) programs (DeFries et al.,
2007).

Research on high-resolution optical images from QuickBird and
IKONOS has tested algorithms to detect crown diameter and other
tree characteristics in a wide range of forest biomes (Asner et al.,
2002; Clark et al., 2004; Palace et al., 2008; Thenkabail et al., 2004;
Wulder et al., 2004). High-resolution satellites can detect individual
tree crowns but the accurate monitoring of forest carbon has not been
fully demonstrated.

The choice of remote sensing system will influence the levels of
uncertainty in the estimates of forest carbon. To quantify uncertainty
of forest carbon estimates, the IPCC (2006) recommends Monte Carlo
analysis, which reduces uncertainty compared to simple combination
of confidence intervals of equation variables (Mandel, 1984). Research
has applied Monte Carlo analysis to forest carbon at regional
(Chambers et al., 2007) and national (Monni et al., 2007) scales,
although not all forest carbon studies quantify uncertainty.

We have sought to advance the application of remote sensing to
forest carbon monitoring through research that provides new
information on the capabilities of Lidar and high-resolution satellites,
on carbon densities of high-biomass forests, and on uncertainties of
forest carbon estimates. Our research objectives are: (1) to directly
compare forest carbon estimates from Lidar data and QuickBird high-
resolution satellite images, calibrated and validated by field measure-
ments of individual trees, (2) to estimate forest carbon densities in
two high-biomass forests in California, and (3) to quantify, with
Monte Carlo analysis, uncertainties in forest carbon estimates from
uncertainties in field measurements, remote sensing accuracy,
biomass regression equations, and spatial autocorrelation.

2. Methods

2.1. Garcia–Mailliard research area

The Garcia–Mailliard research area (Fig. 1) consists of two separate
units between 38.89° and 38.93° N and 123.32° and 123.55° W: (1)
58 km2 eastern half of the private Garcia River forest and (2) 1 km2

Mailliard Redwoods State Natural Reserve (SNR). Located in the North
Coast Range of California, the area consists of low ridges and shallow
valleys. Garcia River forest is secondary coast redwood forest with
post-harvest stands approximately 20–80 years old. The California
Climate Action Registry has registered a carbon project in Garcia River
forest. Mailliard Redwoods SNR, established in 1945, consists of old-
growth coast redwood forest, although not as tall as old-growth coast
redwood forests further north in California with forest carbon

Fig. 1. Location of research areas. Background shows aboveground vegetation carbon density (Matthews et al., 2000) derived from AVHRR remote sensing (Loveland et al., 2000) and
field measurements (Olson et al., 1983), analyzed at 10 km spatial resolution.
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