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During the last three decades, the large spatial coverage of remote sensing data has been used in coral reef
research to map dominant substrate types, geomorphologic zones, and bathymetry. During the same period,
field studies have documented statistical relationships between variables quantifying aspects of the reef
habitat and its fish community. Although the results of these studies are ambiguous, some habitat variables
have frequently been found to correlate with one or more aspects of the fish community. Several of these
habitat variables, including depth, the structural complexity of the substrate, and live coral cover, are
possible to estimate with remote sensing data. In this study, we combine a set of statistical and machine-
learning models with habitat variables derived from IKONOS data to produce spatially explicit predictions of
the species richness, biomass, and diversity of the fish community around two reefs in Zanzibar. In the
process, we assess the ability of IKONOS imagery to estimate live coral cover, structural complexity and
habitat diversity, and we explore the importance of habitat variables, at a range of spatial scales, in the
predictive models using a permutation-based technique. Our findings indicate that structural complexity at a
fine spatial scale (∼5 to 10 m) is the most important habitat variable in predictive models of fish species
richness and diversity, whereas other variables such as depth, habitat diversity, and structural complexity at
coarser spatial scales contribute to predictions of biomass. In addition, our results demonstrate that complex
model types such as tree-based ensemble techniques provide superior predictive performance compared to
the more frequently used linear models, achieving a reduction of the cross-validated root-mean-squared
prediction error of 3–11%. Although aerial photographs and airborne lidar instruments have recently been
used to produce spatially explicit predictions of reef fish community variables, our study illustrates the
possibility of doing so with satellite data. The ability to use satellite data may bring the cost of creating such
maps within the reach of both spatial ecology researchers and the wide range of organizations involved in
marine spatial planning.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Local communities of coral reeffishes are influencedby a complexmix
of global biogeographic patterns (Harrison & Cornell, 2008), stochastic
recruitment pulses (Sale, 1977), and interactions between the fishes and
their habitat operating at a range of spatial scales. This multi-scale
complexity presents a challenge for the development of spatially explicit
predictive models of the fish community, which could greatly aid spatial
planning and conservation management of coral reef environments
(Mellin et al., 2009; Pittman et al., 2009). Despite the complexity, field
studies have established statistical relationships between several aspects
of the local habitat and its fish community. The structural complexity of
the substrate positively correlates with fish species richness, abundance
andbiomass,while live coral cover influencesfish abundance, particularly

of species directly dependent on the corals for food or shelter (Jones et al.,
2004). Depth influences the composition and abundance of the fish
community (Lara & González, 1998), and habitat complexity positively
correlateswith species richness (Pittman et al., 2007a; Purkis et al., 2008).
In addition, location influences the fish community through factors such
as proximity to the reef edge or nearby rivers (Friedlander & Parrish,
1998) and proximity to nursery habitat such as seagrass beds and
mangrove stands (Dorenbosch et al., 2005; Mumby et al., 2004a). The
strength of the specific statistical relationships varies between studies, as
does the spatial scale at which the relationships are strongest (Mellin
et al., 2009). Nevertheless, the existing body of field studies suggests a list
of habitat variables that, if estimated by remote sensing instruments,
would enable the development of spatially explicit predictive models of
fish communities (Knudby et al., 2007). Five of these variables deserve
further attention as they are as possible to map with remote sensing:
depth, structural complexity, substrate type, habitat diversity, and live
coral cover. Methods for deriving water depth from both passive optical
(Lyzenga, 1978; Maritorena et al., 1994; Stumpf et al., 2003) and lidar

Remote Sensing of Environment 114 (2010) 1230–1241

⁎ Corresponding author. Tel.: +1 613 992 8348.
E-mail address: knudby@gmail.com (A. Knudby).

0034-4257/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2010.01.007

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse

mailto:knudby@gmail.com
http://dx.doi.org/10.1016/j.rse.2010.01.007
http://www.sciencedirect.com/science/journal/00344257


remote sensing (Guenther, 2001) are well established, although the
maximum depths at which both methods can be applied are limited by
water turbidity. Digital elevation models can be created from such
spatially distributed depth measurements (Storlazzi et al., 2003), and
measures of structural complexity can be derived (Pittman et al., 2009).
Such measures of structural complexity have already been used to
produce spatial predictive models of fish species richness (Pittman et al.,
2007b). Substratemaps are the standardproducts fromremote sensing of
coral reefs (Mumby et al., 1997), and have been combined with depth to
produce spatial predictions of fish community variables, both on coral
reefs (Mellin et al., 2007) and elsewhere (Herold et al., 2007). Habitat
diversitymeasures are straight-forward to calculate from substratemaps,
but their relationship with fish community variables has been little
explored. One study has found a significant relationship with fish species
richness (Purkis et al., 2008), while others have found the same
relationship to be non-significant (Pittman et al., 2004, 2007b). Live
coral cover has been more difficult to map with remote sensing, because
of sub-pixel heterogeneity and high spectral similarity between corals
and other substrate types such as algae and seagrass (Hochberg et al.,
2003). This causes live coral cover estimates to be highly dependent on
conditions such as water depth, turbidity, and the presence/absence of
spectrally similar substrate types (Hochberg & Atkinson, 2003; Mumby
et al., 2004b). Nevertheless, a few studies have had some success with
mapping live coral cover empirically, using either spectral indices (Joyce,
2004)or classification schemesbasedon thepercentageof live coral cover
(Isoun et al., 2003; Newman et al., 2007). Despite field studies having
demonstrated relationships between live coral cover andfish community
variables, remotely sensed live coral cover has not yet been used for
predictive mapping of fish community variables.

In this study, we derive remotely sensed estimates of depth,
structural complexity, habitat diversity and live coral cover.We derive
these estimates at a range of spatial scales and use them, along with a
substrate classification, a map of geomorphological reef zones, and a
map of boundaries of a local marine protected area, to develop spatial
predictive models for fish species richness, diversity, and biomass. We
compare the predictive performance (error) of six statistical and
machine-learning techniques used to model the fish–habitat relation-
ships, and we assess the influence of each predictor variable, and its
spatial scale, on model predictions. Finally, we use the best overall
model type to produce maps of each fish community variable, and
discuss the application of such maps for marine spatial planning.

2. Methods

2.1. Study area

Our study site covers the reefs around Chumbe Island (3.4 km2) and
Bawe Island (16 km2), two raised Pleistocene reefs located in Zanzibar,
Tanzania. Chumbe Island is located 12 km from Zanzibar town, a
distance that historically has limited fishing pressure. The fringing reef
on the western side of the island has been effectively protected as a
marine park since 1994 (Muthiga et al., 2000), whereas the lagoon and
scattered coral and seagrass areas on the other sides of the island are
open to fishing. The reef around Bawe Island experiences substantial
fishing pressure, as it is located only 5 km from Zanzibar and is legally
open to fishing. The location of the two reefs, and the IKONOS imagery
covering each, is shown in Fig. 1. The tidal range in the area is 4.2 m at
spring tides.

2.2. Field data

This study relies on three distinct data sets: fish data, habitat data,
and two IKONOS satellite images. All data were collected from mid-
September to mid-December 2007, except the satellite image of Bawe
Island which is from October 2005.

The fish community was surveyed at a total of 144 sites on the two
reefs. For each reef, sites were stratified by geomorphologic zone and
substrate type, with the number of sites in each stratum roughly
proportional to its observed variance in fish species richness, biomass
and diversity. The sampling strategy thus aimed at covering the feature
space— i.e. the existing combinations of environmental situations— as
far aspossible,which is required for predictivemodelingbut cameat the
cost of somedegree of spatial clustering in heterogeneous areas, such as
along the edges of the reefs. The exact location of each site around
Chumbe Islandwas determined by snorkelling in a randomdirection for
a random number of fin kicks (minimum 50) from the previous site.
Around Bawe Island, logistical constraints lead to a clustered sampling
design, with points in each cluster distributed across the environmental
gradient from land to the reef edge. Sites shallower that 8 m were
surveyed while snorkelling; SCUBA equipment was used for deeper
sites.

Upon arrival at a site, the observer (AK)wouldwait, passively, for a
period of 5 min. Subsequently, the fish community was surveyed
using the point count method of Bohnsack and Bannerot (1986), with
the radius of observation limited to 5 m due to the combination of
limited visibility and the need to identify small fish to the species
level. While recording data, the observer rested on the surface (or on
the bottom if using SCUBA) at the centre of the site. Observationswere
separated into two five-minute intervals. For the first five-minute
interval, during which the observer slowly rotated to look in all
directions, all fish species with individuals of N5 cm fork length,
observedwithin a radius of 5 m of the centre of the site, were noted on
a dive slate. During the second five-minute interval, the number and
average fork length of individuals was noted for each species. If a
species was observed as present during the first 5 min but could not
be found during the second 5 min, the number and average fork
length was retrieved from memory. Species observed only during the
second five-minute interval were ignored.

These data were used to calculate species richness, biomass, and
diversity for each site. Species richness values follow from a simple
summation of the species seen at a given site. Biomass was derived
from individual fish lengths using the formula Biomass=A LB, where
L is fish fork length, and A and B are constants that depend on fish
shape. For each species, values of A and B published on Fishbase
(Froese & Pauly, 2009) were used if available; values for the genus
were used if species-specific values have not been published. Total
biomass values for each site were log-transformed before analysis in
order to reduce the influence of positive outliers caused by passing
schools of large-bodied fishes. Diversity was calculated using
Shannon's diversity index (Shannon & Weaver, 1963). Calculations
were based on biomass per species rather than abundance, in order to
reduce the bias caused by occasional large schools of small-bodied
Chromis sp. fishes and provide a more ecologically relevant diversity
measure (Wilhm, 1968).

Habitat data were collected at each site (n=144) following the
fish surveys, and at additional sites (n=583) for use in image
classification. The addition habitat sites were determined based on
local knowledge of the area, in order to cover all major substrate types
and geomorphologic zones. The maximum and minimum depths
within a site were measured with a dive computer resting on the
substrate, and used to calculate average depth and depth range for
each site. Five orthogonal substrate photos from each site, taken at a
distance of approximately 2 m from the substrate and each covering
approximately 4 m2, were processed in the software CPCe (Kohler &
Gill, 2006) to derive the percentage cover of live coral and the
dominant substrate type used in image classification. In addition to
these data, 1015 depth measurements were made around the two
islands, also using a dive computer resting on the surface. All field sites
were geolocated using a tracking GPS towed in a water-proof bag,
time-synchronizedwith either the substrate photos or times noted for
each depth measurement.
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