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Mapping of total suspended matter concentration (TSM) can be achieved from space-based optical sensors
and has growing applications related to sediment transport. A TSM algorithm is developed here for turbid
waters, suitable for any ocean colour sensor including MERIS, MODIS and SeaWiFS. Theory shows that use of
a single band provides a robust and TSM-sensitive algorithm provided the band is chosen appropriately.
Hyperspectral calibration is made using seaborne TSM and reflectance spectra collected in the southern
North Sea. Two versions of the algorithm are considered: one which gives directly TSM from reflectance, the
other uses the reflectance model of Park and Ruddick (2005) to take account of bidirectional effects.
Applying a non-linear regression analysis to the calibration data set gave relative errors in TSM estimation
less than 30% in the spectral range 670–750 nm. Validation of this algorithm for MODIS and MERIS retrieved
reflectances with concurrent in situ measurements gave the lowest relative errors in TSM estimates, less
than 40%, for MODIS bands 667 nm and 678 nm and for MERIS bands 665 nm and 681 nm. Consistency of the
approach in a multisensor context (SeaWiFS, MERIS, and MODIS) is demonstrated both for single point time
series and for individual images.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Mapping of total suspended matter concentration (TSM) from
satellites and airborne imagery has become a valuable tool for marine
scientists to assess andmonitor suspended sedimentdistribution,which
is a key element of water quality in coastal areas. Remote sensing (RS)
data have been used in various ways: combined with in situ
measurements to draw up sediment transport maps e.g. van Raaphorst
et al. (1998), as input boundary conditions and validation data to
sediment transport models by Fettweis and Van den Eynde (2003),
assimilated in transport models by Vos and Gerritsen (1997) and Blaas
et al. (2007), or used in the light forcing of an ecosystem model e.g.
Lacroix et al. (2007). With the continuous optimisation of satellite
capabilities e.g. improvement of wavelengths used for MODIS after the
SeaWiFS experiment as described in Esaias et al. (1998), themore bands
and higher spatial resolution of the MERIS instrument, and the
development of algorithms for retrieval of water constituents, the
accuracy and reliability of RS products is increasing. A historical
overview of TSM algorithm evolution from 1974 to 2005 is given in
Acker et al. (2005).

TSM algorithms were first designed for open ocean waters as a
function of chlorophyll a (CHL) concentration, as established in Morel
(1980), Sturm(1980) andViollier andSturm(1984), because suspended

solids in the deep sea consist mainly of plankton and associated organic
detrital matter. The form commonly adopted for CHL algorithms and
inherited by TSM algorithms is a reflectance band ratio, characterizing
the high CHL absorption around 440 nm and low absorption in 550 nm.
However, as underlined by Tassan (1993), CHL and TSM do not co-vary
in coastal waters because of the presence of particles arising from re-
suspension, shore erosion or river discharge, making the blue:green
band ratio algorithms unsuitable for TSM retrieval.

Curran et al. (1987) and Novo et al. (1989) investigated the form of
the relationship between TSM and reflectance in coastal waters and
showed that single band algorithms may be adopted where TSM
increases with increasing reflectance. A variation of these relations
with viewing geometry was observed by Novo et al. (1989). Empirical
calibration of different data sets followed during the last decade,
establishing log-linear models as function of reflectance or radiance in
the visible range. Calibration has been made using variously:
laboratory TSM and reflectance data by Chen et al. (1991), with in
situ reflectances over the Rhône river plume by Forget and Ouillon
(1998) and with MODIS 645 nm-reflectance over Tampa Bay by Hu
et al. (2004). Non-linear equations have been tested by Myint and
Walker (2002) for TSM and AVHRR data, concluding that the best
model is a linear one with AVHRR channel 2 (725 nm–1100 nm) with
non-linear models being better adapted for shorter wavelengths.

Although these models might be efficiently applied to satellite
images concurrent with calibration data sets, their accuracy may be
reduced outside the conditions of the calibration data set because of
the empirical basis. Semi-analytical approaches have overcome such a
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limitation with models based on physical knowledge of the
relationship between reflectance and TSM. The reflectance model of
Gordon et al. (1988) used for open sea waters and validated for inland
turbid waters by Dekker et al. (1997), has been intensively used to
retrieve TSM in estuarine e.g. Stumpf and Pennock (1989) and Dekker
et al. (1998), in coastal and deep waters by Van Der Woerd et al.
(2000), Van Der Woerd and Pasterkamp (2004) and Eleveld et al.
(2008). In very turbid waters Doxaran et al. (2002, 2003) used a NIR
band ratiomodel to remove the effects of particle size distribution and
of the bidirectional variation of the remote sensed reflectance.

Analytical approaches have been developed since the last decade
aiming to solve the reflectance model with water constituents as the
unknowns, by parameterization of specific IOPs (inherent optical
properties) e.g. Forget et al. (1999), Lahet et al. (2000) and Haltrin and
Arnone (2003). Vasilkov (1997) used non-linear least square
regression, with parameterization of particle backscattering coeffi-
cient and coloured dissolved organic matter (CDOM) absorption.
Multi-spectrum multi-component analytical retrieval algorithms are
emerging, where the reflectance spectrum is inverted to derive
simultaneously TSM, phytoplankton pigment and CDOM, e.g: Hoo-
genboom et al. (1998) and Sterckx and Debruyn (2004) using matrix
inversion of the reflectance model and Schiller and Doerffer (1999)
used a neural network technique. The multi-component models (e.g.
TSM, CHL and CDOM) generally use hyperspectral information or at
least many bands in the visible range, to discriminate each
component.

In the present study a single band algorithm for TSM retrieval
based on a reflectance model is developed (Section 2) and calibrated
(Section 3) using seaborne reflectance and TSM measurements
collected in the southern North Sea area. A second version of the
algorithm is calibrated using the reflectance model of Park and
Ruddick (2005) to take into account the bidirectional effects
(Sections 2.1 and 2.2). Unlike the papers available in literature up to
now, this TSM algorithm innovates by its hyperspectral calibration, its
strong theoretical basis and its simple application to multiple ocean
colour sensors. The hyperspectral calibration is used to identify the
best spectral interval for TSM retrieval from remote sensed reflec-
tance, while the semi-empirical approach takes into account assump-
tions on spatial and temporal variability of specific IOPs, whose impact
on TSM estimation are discussed in “Web Appendix 1 — Theoretical
error of estimates”, hereafter referred to as WA1. The results of the
generic hyperspectral calibration and the specific calibration for
MERIS, MODIS and SeaWiFS sensors are presented (Section 4). The
results of the calibration using the reflectance model of Park and
Ruddick (2005) are presented in “Web Appendix 2 — BRDF algorithm
variant”, denoted byWA2 and themethod to remove outliers from the
calibration dataset is given in “Web Appendix 3 — Treating outliers in
regression analysis” (WA3). Validation of the algorithm is carried out
using MERIS and MODIS imagery (Section 5) and model errors are
assessed using in situ matchups. TSM time series from the MERIS
standard product using the neural network technique Schiller and
Doerffer (1999) and from MODIS and SeaWiFS using the current
algorithm are shown (Section 6). The performance of the single band
algorithm is demonstrated with TSM concentration maps retrieved
from the three ocean colour sensors (Section 7). Finally conclusions
synthesize the method and the results and consider future possibil-
ities of TSM retrieval in a synergistic multisensor perspective
(Section 8).

2. Theory

The aim of this section is to derive the mathematical form of the
model allowing TSM concentration, S, to be estimated from the water-
leaving reflectance defined by:

ρwðλÞ = πRrsðλÞ ð1Þ

where Rrs is the remote sensing reflectance at wavelength λ (dropped

hereafter for simplicity): Rrs =
L0+w
E0+
d

, Lw0+ and Ed
0+ are respectively the

water-leaving radiance, corrected for air–sea interface reflection, and
the downward irradiance just above the sea surface. S is first related
to the ratio of total backscattering bb to total absorption a,ω′b = bb

a . Two
alternative approaches are then offered here. In the first approach the
inherent optical property ωb′ is estimated from water-leaving reflec-
tance by inversion of the reflectancemodel of Park and Ruddick (2005).
In the second approach, the simple first order analytical reflectance
model of Gordon et al. (1988) is used. It is assumed in thesemodels that
bottom effects do not contribute to water-leaving reflectance (optically
deep water column).

2.1. Inherent optical property model

For the purposes of deriving a total suspended matter retrieval
algorithm, ωb′ is most conveniently divided into the contributions to
backscatter and absorption from particles (both non-algal and algal)
and all other non-particle optically-active substances (essentially the
pure water molecules and coloured dissolved organic matter):

ω′b =
bbp + bbnp
ap + anp

ð2Þ

where the subscripts p and np denote the particle and non-particle
contributions. A number of assumptions and approximations regard-
ing these inherent optical properties (IOPs) are then made in order to
relate S directly to ωb′. The validity of these assumptions is obviously
crucial to the accuracy of the consequent retrieval algorithm and is
assessed in detail in the error analysis of WA1. Starting with the most
important, these assumptions are as follows:

1. Particulate backscatter is assumedproportional to TSM concentration
via the constant TSM-specific particulate backscatter coefficient, bbp⁎:

bbp = b*bpS ð3Þ

This is themost important of the 4 assumptionsmade regarding IOPs
since natural variability of bbp⁎ will give a direct, linear error to S
retrieval. Both specific-scattering studied in Babin et al. (2003a) and
the scattering:backscattering ratio examined by Boss et al. (2004) are
known to vary in relationwith space or time variations of particle size
and composition, and bbp⁎ is expected to be significantly different
between algae and non-algae particles (as well as being variable
within these two groups). If the natural variability of bbp⁎ could be
characterised in someway a priori, then itmaybe possible to improve
on this assumption. The quantification of the errors associated with
differences in bbp⁎ between algae and non-algae particles is given in
WA1, Section I.1.

2. Space and time variabilities of non-particulate absorption, anp is
assumed to be negligible. For validity of this assumption in areas of
high CDOM absorption, e.g. coastal waters with river plumes, it is
necessary to choose the wavelength for retrieval such that the pure
water absorption is dominant. The impact of variability of anp on
retrieval errors is quantified in WA1, Section I.2.

3. Particulate absorption is assumed proportional to TSM concentration
via the constant TSM-specific particulate absorption coefficient, ap⁎:

ap = a*pS: ð4Þ

It iswell known that there is considerable variability in ap⁎ as stressed
by Babin et al. (2003b), both in magnitude and spectral variation,
according to the size and composition of particles. This is particularly
significant when comparing algae particles with non-algae particles.
However, the impact of this variability on retrieval accuracy can be
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