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The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific
importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous
measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and
interannual time scales. However, these measurements only represent the fluxes at the scale of the tower
footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer
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(MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the
continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide
range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach.
The predictive model was trained using observed GPP over the period 2000–2004, and was validated using
observed GPP over the period 2005–2006 and leave-one-out cross-validation. Our model predicted GPP fairly
well at the site level. We then used the model to estimate GPP for each 1 km×1 km cell across the U.S. for
each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP
estimates provide a spatially and temporally continuous measure of gross primary production for the U.S.
that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical
approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous
GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and
interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr−1 for
the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have
a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of
U.S. GPP were dominated by these extreme climate events and disturbances.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The quantification of ecosystem carbon fluxes for regions, con-
tinents, or the globe can improve our understanding of the feedbacks
between the terrestrial biosphere and the atmosphere in the context of
global change and facilitate climate-policy decisions (Law et al., 2006).
Gross primary productivity (GPP) is the amount of carbon fixed by
vegetation through photosynthesis and a key component of ecosystem
carbon fluxes and the carbon balance between the biosphere and the
atmosphere (Mäkelä et al., 2008). The accurate estimation of GPP is
essential for the quantification of net ecosystem carbon exchange (NEE)
as the latter is often a small difference of two large carbon fluxes— GPP
and ecosystem respiration (Re). The estimation of GPP for regions,
continents, or the globe, however, can only bemade by using ecosystem
models (e.g., Prince & Goward, 1995) and/or remotely sensed data (e.g.,
Running et al., 2004).

Eddy covariance flux towers have been providing continuous
measurements of ecosystem-level exchange of carbon, water, and
energy spanningdiurnal, synoptic, seasonal, and interannual time scales
since the early 1990s (Baldocchi et al., 2001; Wofsy et al., 1993). At
present, over 500 eddy covariance flux towers are operating on a long-
term and continuous basis around the world (FLUXNET, http://daac.
ornl.gov/FLUXNET). This global network encompasses a large range of
climate and biome types (Baldocchi et al., 2001), and provides probably
the best estimates of ecosystem-level carbon fluxes. The flux towers
directlymeasureNEE that canbe separated into twomajor components:
GPP and Re (Desai et al., 2008; Reichstein et al., 2005). However, these
estimates only represent fluxes at the scale of the tower footprint with
longitudinal dimensions rangingbetweena hundredmeters and several
kilometers depending on homogeneous vegetation and fetch (Göckede
et al., 2008; Schmid, 1994). Toquantify theexchangeof CO2between the
terrestrial biosphere and the atmosphere, significant efforts are needed
to upscale flux tower measurements from the stand scale to landscape,
regional, continental, or global scales.

Satellite remote sensing is a potentially valuable tool for upscaling
efforts (Running et al., 1999; Xiao et al., 2008). Several studies have
integrated flux data with remote sensing data to quantify GPP over
large areas. Zhang et al. (2007) estimated GPP for the Northern Great
Plains grasslands using satellite and flux tower data. Yang et al. (2007)
linked satellite observations to flux tower GPP data for the estimation
of GPP for two broad vegetation types in the U.S. using a machine
learning approach. Despite these efforts, to our knowledge, no study
has upscaled AmeriFlux GPP data to the continental scale to produce
spatially-explicit estimates of GPP across multiple biomes and to
examine the patterns, magnitude, and interannual variability of GPP
over the conterminous U.S.

Here we used a regression tree approach and remotely sensed data
from the Moderate Resolution Imaging Spectroradiometer (MODIS) to

upscale flux tower GPP data to the continental scale and producedwall-
to-wall GPP estimates for multiple biomes across the conterminous U.S.
First,wedeveloped apredictiveGPPmodelbasedon site-specificMODIS
andflux towerGPPdata, and validated themodel using eddyfluxdata in
both temporal and spatial domains. Second, we applied the model to
estimate GPP for each 1 km×1 km cell across the conterminous U.S. for
each 8-day interval over the period 2000–2006 using wall-to-wall
MODIS data. Third, we examined the patterns, magnitude, and
interannual variability of GPP across the conterminous U.S.

2. Data and methods

2.1. Regression tree approach

We used a modified regression tree approach implemented in the
commercial software, Cubist, to upscale flux tower GPP to the
continental scale. Regression tree algorithms typically predict class
membership by recursively partitioning a dataset into more homo-
geneous subsets. The partitioning process splits each parent node into
two child nodes, and each child node is treated as a potential parent
node. Regression tree models can account for a nonlinear relationship
between predictive and target variables and allow both continuous
and discrete variables. Previous studies showed that regression tree
methods are not only more effective than simple techniques including
multivariate linear regression, but also easier to understand than
neural networks (e.g., Huang & Townshend, 2003).

Cubist constructs an unconventional type of regression tree, in
which the terminal nodes or leaves are linear regression models
instead of discrete values (Minasny & McBratney, 2008). Cubist
produces rule-based models containing one or more rules, each of
which is a set of conditions associated with a multivariate linear
submodel. Cubist is a powerful tool for generating rule-based
predictive models. A Cubist model resembles a piecewise linear
model, except that the rules can overlap with one another (RuleQuest,
2008). Details on regression tree approaches and Cubist were
described in Yang et al. (2003), Wylie et al. (2007), and Xiao et al.
(2008). In our previous study, we used Cubist to develop a predictive
NEEmodel and upscaled NEE estimates to the continental scale for the
conterminous U.S. (Xiao et al., 2008). In this study, we used Cubist to
construct a predictive GPPmodel based onMODIS and AmeriFlux GPP
data. Cubist uses three statistical measures to evaluate the quality of
the constructed predictive model, including mean absolute error
(MAE), relative error (RE), and product-moment correlation coeffi-
cient (Xiao et al., 2008; Yang et al., 2003). MAE is calculated as:

MAE =
1
N

∑
N

i=1
jyi−ŷi j ð1Þ
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