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Large areas of forest in the US and Canada are affected by insects and disease each year. Over the past century,
outbreaks of the Eastern spruce budworm have become more frequent and severe. The notion of designing a
more pest resistant landscape through prescriptive management practices hinges on our ability to effectively
model forest–insect dynamics at regional scales. Increasingly, more detailed pixel-wise estimates of forest
biophysical parameters are needed for such endeavors. Lidar technology, although promising, is not yet
viable for repeated regional accounting, necessitating the development of methods which take advantage of
existing spaceborne assets. Our objective is to use one of these assets (SPOT-5) to estimate a large set of
forest structural attributes at a finer spatial grain size (5 m and 10 m) over a broader area than is currently
available for the purpose of supplying needed input data for disturbance simulation modeling. We employ
neighborhood statistics (standard deviation, variance, sill variance, and ratios of these metrics at 5 and 10 m)
calculated from SPOT-5 sensor data and derivatives to estimate and map tree canopy diameter (CDIA), bole
diameter at breast height (DBH), tree height (HT), crown closure (CC), vertical length of live crown (LC), and
basal area (BA). A partial least squares (PLS) regression approach was used with these local statistics and
field data to produce models for pixel-wise estimation and mapping of mean values, respectively, for
hardwood and coniferous forest CDIA (R2=0.82 and 0.93, RMSE 0.62 and 0.47 m), DBH (R2=0.82 and 0.90,
RMSE 2.92 and 3.75 cm), HT (R2=0.69 and 0.92, RMSE 1.27 and 1.59 m), CC (R2=0.52 and 0.68, RMSE 5.49
and 6.02%), LC (R2=0.58 and 0.81, RMSE 0.96 and 1.25 m), and BA (R2=0.71 and 0.74, RMSE 2.47 and
4.58 m2 ha−1) for a 3600 km2 area in northeast Minnesota. This approach for quantifying forest structure is
robust in the sense that a detailed forest cover type map is not required to stratify analysis at any step in the
process. Hence, we show that multi-resolution SPOT-5 data are a practical alternative to lidar for regional
characterization of forest biophysical parameters. However, lidar data may potentially be used to calibrate
these SPOT-based structure models in the future.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Large areas of forest in the US and Canada are affected by insects
and disease each year. Over the past century, outbreaks of the Eastern
spruce budworm (Choristoneura fumiferana) have become more
frequent and severe as a result of past forest management practices,
fire suppression, and pesticide application that favored expansion of
host species (Blais, 1983). Because observed changes in insect
disturbance history are largely human induced, it may also be possible
to undo or at least mitigate these effects through prescriptive forest
management (Blais, 1983). Forest ecologists have identified several
forest stand characteristics such as tree species composition and basal
area (Ghent, 1958; Batzer 1969; Crook et al., 1979; Bergeron et al.,
1995; Alfaro et al., 2001; Sturtevant et al., 2004; Hennigar et al., 2008),
host needle biomass and terrain position (Magnussen et al., 2004),
forest age and crown closure (Alfaro et al., 2001), canopy position

(Zhang & Alfaro, 2001), bole diameter (Bergeron et al., 1995), and
other structural parameters that are indicative of the relative
vulnerability of a stand to a spruce budworm outbreak should one
occur. However, the notion of using this information to design a more
pest resistant landscape is highly complex and hinges on our ability to
effectively model multiple biological disturbance interactions at
regional scales (Blais, 1983; Sturtevant et al., 2004). Ideally, spatially
explicit landscape succession and disturbance models tailored for
these efforts, such as LANDIS and LANDIS II (Mladenoff & He, 1999;
Scheller & Mladenoff, 2004; Schumacher et al., 2004; Sturtevant et al.,
2004; Scheller et al., 2007), make use of pixel-level information to
parameterize the land surface to the extent that these data are
available. While rudimentary pixel-level information describing the
abundance and distribution of spruce budworm host species on a
regional scale is available for some areas (e.g. Wolter et al., 2008), the
need for more detailed forest structure information for these purposes
and many others is increasingly coveted.

All ecosystem process models require parameterization of the land
surface in one form or another. At medium to large spatial scales the
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most realistic possibility for accurate estimation and periodic update of
these parameters is satellite remote sensing (Hall et al., 1995;
Widlowski et al., 2004). The need to easily extract forest biophysical
parameters over large areas at a relatively fine grain size is significant,
as it provides a means for the inclusion of previously missing forest
parameter data into regional ecosystem models to directly estimate
linkages between forest structure and ecosystem functioning (Song,
2007). As such, one of themost persistent objectives of satellite remote
sensing has been classification and quantification of forest biophysical
properties such as tree species composition (Wolter et al., 1995; Reese
et al., 2002), canopy diameter (Li & Strahler, 1985; Woodcock et al.,
1997; Cohen& Spies,1990; Song&Woodcock, 2003; Song, 2007), stem
density (Cohen & Spies, 1992; Hudak et al., 2006; McRoberts, 2008),
basal area (Franklin, 1986; Franco-Lopez et al., 2001; Hudak et al.,
2006; McRoberts et al., 2007; McRoberts, 2008; Wolter et al., 2008),
above ground biomass or volume (Franco-Lopez et al., 2001; Santoro
et al., 2002; Pulliainen et al., 2003; Zheng et al., 2004; Muukkonen &
Heiskanen, 2005; Rauste, 2005; Hall et al., 2006; McRoberts et al.,
2007), bole diameter (Greenberg et al., 2005), tree height (Maltamo
et al., 2006; Walker et al., 2007), live crown height (Maltamo et al.,
2006), crown closure (Li & Strahler, 1985; Cohen et al., 1990; Cohen
et al., 1995; Woodcock et al., 1997), stand age (Cohen & Spies, 1992;
Cohen et al., 1995; Franklin et al., 2001), disturbance (Vogelmann &
Rock,1989; Healey et al., 2005), health (Vogelmann & Rock,1988), and
other characteristic forest attributes that are commonly sought after to
understand forest functional complexity (Mc Elhinny et al., 2005).
While many satellite-based efforts have consistently achieved moder-
ate to high levels of success measuring subsets of these parameters,
more comprehensive parameter sets describing forest structural
complexity beyond small study sites has not yet been achieved
(Anderson et al., 2008). Although lidar technology, used by itself or in
combination with other sensor data, is considered optimal for
estimating many of these forest parameters (Hyyppä & Inkinen,
1999; Anderson et al., 2008; Hudak et al., 2008), automation and
extrapolation to larger, regional scales remains a challenge.

Forests of the northern Great Lakes States (Minnesota, Wisconsin,
and Michigan) consist largely of second and third growth stands with
less than 9% of old growth (N120 years) remaining (Frelich & Reich,
1995). The diversity and smaller stature of these forests effectively
precludes application of most Landsat-based techniques for estimating
structure that have shown promise for western coniferous forests
(Woodcock & Strahler, 1987; Cohen & Spies, 1992; Cohen et al., 1995;
Hansenet al., 2001). Alternatively, nearest neighbor techniques, such as
the popular k-Nearest Neighbor (k-NN) method described by McRo-
berts et al. (2007), have shown promise when used with Landsat data
for estimating stand-level forest structure information in the Great
Lakes region (McRoberts et al., 2007; McRoberts, 2008, 2009) and
northern Europe (Katila & Tomppo, 2001; Tomppo et al., 2009).With k-
NN, forest parameter predictions, for pixels without ground reference
data, are calculated as linear combinations of reference pixel values that
are nearest in feature space according to some distance metric
(Tomppo et al., 2009). However, arbitrary selection of k neighbors,
distance metrics, distance cutoff criteria, and neighbor weights are
cited as potential limitations of the technique, as well as computation
intensity when applied over large areas (Finley et al., 2006; McRoberts
et al., 2007; Meng et al., 2009). While data reduction techniques (e.g.,
principal components analysis) applied to sensor data prior to analysis
is a common prescription for increasing the efficiency of the k-NN
algorithm (Meng et al., 2009; McRoberts et al., 2007), such data
reduction may be undesirable if goals include identifying specific
spectral regions or indices that best explain variance among dependent
forest variables (see Wolter et al., 2008).

Estimates of forest structure made using high spatial resolution
(0.6 m–4.0 m) satellite data (Shugart et al., 2000; Song & Woodcock,
2003; Song, 2007; Lamonaca et al., 2008; Wulder et al., 2008),
airborne or spaceborne lidar (Lefsky et al., 1999, 2005), or combina-

tions of optical satellite data with airborne lidar (Donoghue & Watt,
2006; Wulder et al., 2007) are increasingly precise, but are limited for
regional application due to high cost to coverage area ratios (Zheng
et al., 2008) compared to more synoptic satellite sensors such as SPOT
(60×60 km), Landsat (185×185 km), or MODIS (2330 km swath).
Moreover, airborne lidar coverage represents only a fraction of the
regional need for such data, and while it is ideal for measuring tree
height, and subsequently, estimating forest biomass, it generally
cannot provide direct information on canopy diameter (Song, 2007).

In this study we take advantage of the geospatial relationship
between tree canopy size (i.e. diameter) and resulting representations of
these canopies when imaged at two different pixel resolutions (Wood-
cock et al., 1997; Song&Woodcock, 2003; Song, 2007) to estimatemean
canopy diameter (CDIA), tree height (HT), bole diameter at breast height
(DBH), canopy closure (CC), basal area (BA), and height of live crown
(LC) using 5mand10mSPOT-5 (Systemepour l'Observation de la Terre)
satellite sensor data collected over northeast Minnesota. SPOT-5 sensor
data is convenient as it represents a reasonable compromise between
high and medium spatial resolution, while also having a large coverage
area compared to IKONOS or Quickbird satellite data.

1.1. Study objective

The primary goal of this paper is to demonstrate a unique approach
for modeling and mapping a set of forest structure parameters
(Appendix A) using optical sensor data with a relatively fine spatial
resolution (5 m and 10 m), but with large enough coverage area
(60 km×60 km) to be practical for repeated, regional studies. We
employ a broad suite of predictor variables (Table 1) derived from the
SPOT-5 sensor data including panchromatic (PAN, 5 m) and multi-
spectral (XS, 10 m) reflectance bands, XS indices, semivariogram sill
parameters and sill ratios (Song & Woodcock, 2003; Song, 2007), and

Table 1
Local statistics calculated within Euclidean neighborhoods for SPOT-5 bands and
derivatives.

Variables Descriptions

GRN Mean of 10 m visible green (July)
RED Mean of 10 m visible red (July)
NIR Mean of 10 m near-infrared (July)
SWIR Mean of 20 m shortwave infrared (July)
P5 Mean of 5 m PANchromatic band (August)
P10P Mean of simulated 10 m PAN: P5 regularized to10 m
P10X Mean of simulated 10 m PAN: (GRN + RED)/2
SNIR Standard deviation of NIR
S5 Standard deviation of P5
S10P Standard deviation of P10P
S10X Standard deviation of P10X
VNIR Variance of NIR
V5 Variance of P5
V10P Variance of P10P
V10X Variance of P10X
C5 Semivariogram sill parameter for P5
C10P Semivariogram sill parameter for P10P
C10X Semivariogram sill parameter for P10X
NDVI Normalized difference vegetation index: (NIR-RED) / (NIR+RED)
MSI Moisture stress index: SWIR/NIR
SVR Shortwave infrared to visible ratio: SWIR/[(RED+GRN)/2]
S510P Ratio of standard deviations: S5/S10P
S510X Ratio of standard deviations: S5/S10X
V510P Ratio of variances: V5/V10P
V510X Ratio of variances: V5/V10X
C510P Ratio of semivariogram sill parameters: C5/C10P
C510X Ratio of semivariogram sill parameters: C5/C10X

There are four multi-spectral bands (15 July 2006), one 5 m panchromatic (P5) band
(31 August 2006), and two simulated 10m panchromatic bands: one produced from the
August panchromatic image (P10P) and the other from the multi-spectral July image
(P10X). The remaining image variables were derived using these seven bands that are
highlighted in bold. Prefixes S, V, and C (except SVR and SWIR) are used specifically to
denote standard deviation, variance, and sill, respectively.
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