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Accurate monitoring of spatial and temporal variation in tree cover provides essential information for
steering management practices in orchards. In this light, the present study investigates the potential of
Hyperspectral Mixture Analysis. Specific focus lies on a thorough study of non-linear mixing effects caused by
multiple photon scattering. In a series of experiments the importance of multiple scattering is demonstrated
while a novel conceptual Nonlinear Spectral Mixture Analysis approach is presented and successfully tested
on in situ measured mixed pixels in Citrus sinensis L. orchards. The rationale behind the approach is the
redistribution of nonlinear fractions (i.e., virtual fractions) among the actual physical ground cover entities
(e.g., tree, soil). These ‘virtual’ fractions, which account for the extent and nature of multiple photon
scattering only have a physical meaning at the spectral level but cannot be interpreted as an actual physical
part of the ground cover. Results illustrate that the effect of multiple scattering on Spectral Mixture Analysis
is significant as the linear approach provides a mean relative root mean square error (RMSE) for tree cover
fraction estimates of 27%. While traditional nonlinear approaches only slightly reduce this error
(RMSE=23%), important improvements are obtained for the novel Nonlinear Spectral Mixture Analysis
approach (RMSE=12%).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In agricultural perennial plant production systems, such as
orchards, information on spatial and temporal variation in vegetation
cover has proven useful for steeringmanagement practices (Fitzgerald
et al., 2005; Fares et al., 2008; Peddle & Smith, 2005). Tree canopy
cover, which is highly correlated with leaf area index and biomass
(Fitzgerald et al., 2005; Peddle & Smith, 2005), governs radiation
interception and affects orchard yield potential and crop water
requirements (Lelong et al., 1998). As such, it influences pest and
disease management (Goodwin et al., 2005; Muhammed & Larsolle,
2003). Large variations in tree cover can lead to inefficient use of
resources (e.g., pesticides, fertilizer, water, labor), thus posing risks to
the production potential (e.g., water stress, nutrient deficiency) and
the environment (e.g., excess runoff, salinity, soil nitrification and
acidification) (Castro et al., 2006; Fares et al., 2008). A robust and
accurate technique for site specificmonitoring of tree cover in orchards
would therefore result in important ecological and economic benefits.

Remote sensing has considerable potential for providing accurate
estimates of orchard tree cover as an alternative to labor intensive and
expensive field measurements. Space-borne spectral sensors allow for
frequent and relatively inexpensive monitoring over large areas. For
monitoring and mapping purposes Spectral Mixture Analysis (SMA) is

an often used image analysis technique (e.g., Adams et al., 1993;
Goodwin et al., 2005; Lelong et al., 1998; Muhammed & Larsolle, 2003;
Peddle & Smith, 2005; Settle & Drake, 1993). SMA provides sub-pixel
cover distribution maps. The technique is preferred over traditional
pixel-based image classification as it accounts for the undesired spectral
contribution of background features (e.g., soils, weeds) which are
prevalent in agricultural scenes (Fitzgerald et al., 2005; Lelong et al.,
1998).

Conventional SMA approaches model a mixed spectrum as a linear
combination of pure spectral signatures of its constituent components
(i.e., endmembers), weighted by their sub-pixel fractional cover (i.e.,
Linear Spectral Mixture Model, LSMM) (e.g., Adams et al., 1993; Settle
& Drake, 1993). Once a set of appropriate endmembers and their
corresponding spectral signatures have been defined, sub-pixel cover
distribution maps can be generated by model inversion using
approaches such as Singular Value Decomposition (Asner & Lobell,
2000), Gramm–Schmidt Orthogonalization (Adams et al., 1995),
maximum-likelihood (Settle, 2006) or least-squares error (LSE)
analysis (Barducci & Mecocci, 2005).

SMA retrieved cover fraction estimates are frequently altered by
non-instrumentally induced errors. Errors can be injected into cover
fractions because of (i) the lack of ability of SMA techniques to account
for endmember variability, caused by spatial and temporal changes
in (bio)physical and (bio)chemical conditions of the different land
cover types (i.e., crop, soil, weed) (e.g., Roberts et al., 1998; Sabol et al.,
1992); and (ii) the multiple scattering of photons between different
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surface components, which violates the linearity assumption of
mixture models (Borel & Gerstl, 1994; Roberts, 1991). Over the past
decades SMA studies have focused on solving the endmember
variability problem, neglecting the effects of multiple scattering and
the resulting nonlinear mixing. As a result, contrary to nonlinear
mixing techniques numerous solutions are available to account for
endmember variability based on iterative mixture analysis cycles (e.g.,
Asner & Lobell, 2000; Bateson et al., 2000; Roberts et al., 1998; Rogge
et al., 2006), waveband selection algorithms (e.g., Asner & Lobell,
2000; Somers et al., in press) and spectral normalization techniques
(e.g., Asner & Lobell, 2000; Li, 2004; Wu, 2004; Zhang et al., 2004,
2005). Nonlinear mixing due to multiple scattering of photons has
been firmly established for mineral soils (Mustard & Pieters, 1987),
and water (Mertes et al., 1993) and has widely been reported in plant–
soil mixtures (e.g., Borel & Gerstl, 1994; Huete, 1986; Roberts, 1991;
Roberts et al., 1993; Ray &Murray,1996). Nevertheless, in themajority
of vegetation monitoring studies the effect of multiple scattering is
neglected. LSMMs are still applied using arguments on the complex
nature of multiple scattering and the simplicity and relative accuracy
of the linear models (e.g., Fitzgerald et al., 2005; Tompkins et al.,
1997). Asner and Lobell (2000) tried to diminish the effects of
nonlinear mixing by only including SWIR2 (2050–2500 nm) spectral
information in their LSMM. The rationale was that multiple scattering
in vegetated areas is dominant in the NIR spectral domain (750–
1450 nm) due to the near-lambertian scattering behavior of leaves in
this part of the electromagnetic spectrum (Asner, 1998; Lobell et al.,
2002), while it was less pronounced in the SWIR2 domain. Others
circumvent the problem of nonlinear mixing by validating algorithms
using synthetic imagery in which nonlinear mixing effects are
excluded (e.g., Rogge et al., 2006; Somers et al., 2009a,b, in press).
As a result, only limited focus has been given to Nonlinear Spectral
Mixture Analysis (NSMA) in the literature.

Borel and Gerstl (1994) were one of the first to model the
phenomenon of multiple scattering in plant–soil mixtures. Using a
radiosity method, they illustrated that by including additional end-
members, eachaccounting for a characteristic interaction amongground
objects, nonlinear spectral mixing could be accurately and realistically
modeled. Although the approach has shown improved accuracies over
Linear SpectralMixture Analysis (LSMA) in both arid ecosystems (Ray &
Murray, 1996) as well as in forest/grassland ecotones (Arai, 2007; Chen
& Vierling, 2006), its validation has not yet been fully addressed.

Despite the numerous applications for SMA, nonlinearity has
barely been investigated and the corresponding nonlinear mixing
models have never been validated in agricultural production systems.
Yet in agricultural fields and more specifically in orchards, plants are
geometrically ordered which not only make these drastically different
from the abovementioned environments but furthermore provides
novel opportunities for consistent modeling of nonlinearity. Recall
that multiple scattering is mainly determined by the 3D structure
composition of the surrounding area. The presence of trees in
relatively high densities, as observed in orchards, as such reinforces
the occurrence of nonlinear mixing (Borel & Gerstl, 1994; Zhang et al.,
2007). In sparsely vegetated arid regions, LSMMs tend to work well
because plants are widely separated and thus the area of scattering is
well localized covering a small area (Elmore et al., 2000; McGwire
et al., 1999). As shown by Ray andMurray (1996), fractions in the close
proximity of the plants are erroneous, but the error declines rapidly
with increasing distance to the plant. The vertical structure of the
canopy and the spatial distribution of the plants play an important
role in nonlinearity, but also the leaf radiation transmittance.
Relatively opaque leaves, such as conifer needles, tend to produce
less NIR scattering than the relatively thin leaves of broadleaf plants
and grasses observed in agricultural fields and orchards (Asner, 1998;
Roberts et al., 2004). Thus, nonlinear mixing tends to be less
significant in conifer ecosystems than in crop lands (Painter et al.,
1998). All these considerations imply that orchards are splendid study

objects for increased nonlinear mixing. Moreover, due to the spatial
repetition of tree rows (i.e., fixed plant distances) and the consistency
in tree structure (i.e., controlled by pruning) a mathematical
description of nonlinear mixing seems feasible. Therefore, a thorough
nonlinear model calibration, optimization and validation could have
important positive repercussions for the use of SMA in orchards.

Hence, the present study aims at improved sub-pixel tree cover
fraction estimates in plant production systems using SMA. A specific
focus of this study is on a study of non-linear mixing effects. Citrus
(Citrus sinensis L.) orchards are chosen as pilot plant production
system. The research objectives can be summarized as follows:

(i) quantify the amplitude and nature of multiple scattering in
orchards;

(ii) validate and optimize the performance of existing NLMMs in
orchards (Chen & Vierling, 2006; Ray & Murray, 1996);

(iii) present an alternative NSMA approach for improved tree cover
mapping in orchards.

In situ measured mixed pixel spectra (i.e., ground plots) and the
corresponding pure sub-pixel endmember spectra of different end-
member combinations in Citrus orchards were used for validation.
Unlike imagery-based studies, controlled in situ measurements allow
the use of pixel- or plot-specific reference endmembers to minimize
the effects of endmember variability and to isolate the effect of
multiple scattering (Ray & Murray, 1996).

2. Theoretical background

2.1. Linear Spectral Mixture Analysis

The physical assumption underlying Linear Spectral Mixture
modeling is that each incident photon interacts with one earth
surface component only and that the reflected spectra do not mix
before entering the sensor (Adams et al., 1993; Settle & Drake, 1993).
In its general form the LSMM can, as such, be described as:
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where Ri is themeasured reflectance of amixed pixel in spectral band i,
Ri,j, the jth endmember reflectance for spectral band i.m is the number
of endmembers and fj is the sub-pixel cover fraction of the jth
endmember in the pixel. The residual term εi is the unmodeled portion
of the spectrum. The coefficients in Eq. (1) are often constrained to
(i) sum to one and (ii) to be non-negative in order to obtain physically
interpretable cover fraction estimates (Adams et al., 1993; Settle &
Drake,1993). Fraction estimates are obtained by inverting themodel in
Eq. (1). One possible solution is the LSE estimatorwhich solves vector f
such that the following equation is minimized:
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In Eq. (2) n is the number of available spectral bands. Agricultural
fields are characterized by a limited number of well-defined land
cover classes or endmembers being crop (i.e., tree) (Ri,t), weed (Ri,w),
soil (Ri,s) and shade (Ri,sh) (Peddle & Smith, 2005).

2.2. Nonlinear Spectral Mixture Analysis

Traditionally, Nonlinear Spectral Mixture Models (NLMM) account
for the presence of multiple photon interactions by introducing
additional ‘interaction’ terms in LSMM (Eq. (1)). Each term accounts
for multiple interactions between endmembers and is represented by
the cross-product of the interacting endmembers (Borel & Gerstl,
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