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This article aims at finding efficient hyperspectral indices for the estimation of forest sun leaf chlorophyll
content (CHL, µg cmleaf

−2 ), sun leaf mass per area (LMA, gdry matter mleaf
−2 ), canopy leaf area index (LAI, m2

leaf

msoil
−2 ) and leaf canopy biomass (Bleaf, gdry matter msoil

−2 ). These parameters are useful inputs for forest
ecosystem simulations at landscape scale. The method is based on the determination of the best
vegetation indices (index form and wavelengths) using the radiative transfer model PROSAIL (formed by
the newly-calibrated leaf reflectance model PROSPECT coupled with the multi-layer version of the canopy
radiative transfer model SAIL). The results are tested on experimental measurements at both leaf and
canopy scales. At the leaf scale, it is possible to estimate CHL with high precision using a two wavelength
vegetation index after a simulation based calibration. At the leaf scale, the LMA is more difficult to
estimate with indices. At the canopy scale, efficient indices were determined on a generic simulated
database to estimate CHL, LMA, LAI and Bleaf in a general way. These indices were then applied to two
Hyperion images (50 plots) on the Fontainebleau and Fougères forests and portable spectroradiometer
measurements. They showed good results with an RMSE of 8.2 µg cm−2 for CHL, 9.1 g m−2 for LMA, 1.7 m2

m−2 for LAI and 50.6 g m−2 for Bleaf. However, at the canopy scale, even if the wavelengths of the
calibrated indices were accurately determined with the simulated database, the regressions between the
indices and the biophysical characteristics still had to be calibrated on measurements. At the canopy
scale, the best indices were: for leaf chlorophyll content: NDchl = (ρ925−ρ710)/(ρ925+ρ710), for leaf mass per
area: NDLMA=(ρ2260−ρ1490)/(ρ2260+ρ1490), for leaf area index: DLAI =ρ1725−ρ970, and for canopy leaf
biomass: NDBleaf = (ρ2160−ρ1540)/(ρ2160+ρ1540).

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Forest ecosystems are well-studied at the stand scale. However, in
order to better understand their functioning and response to
environmental changes, it is necessary to up-scale this knowledge to
the scale of the entire forest or small region (Landsberg, 2003; Makela
et al., 2000). Oneway to reach this objective is to use ecosystemmodels
that are validated with local-scale observations and applied to larger
areas. For a large scale simulation, a selection of spatially-parameter-

ized input parameters is necessary. The selection of the main spatial
parameters should meet the following criteria (le Maire et al., 2005):

(i) to be a parameter to whish the model is sensitive,
(ii) to be spatially variable at the scale of interest (for instance

between stands), and to have a larger variability at this scale
than at finer scale (e.g., inter-stand vs. intra-stand variability),

(ii) to have a non-linear model response: this strengthens the need
for spatialization of the parameter if the simulation results are
averaged.

A study with a particular forest process-based ecosystem model
has shown that a number of parameters are sensitive in this model
(Dufrêne et al., 2005). Many of these parameters are spatially variable
between stands, some of them having a non-linear response (Davi
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et al., 2006). Among these parameters, in addition to soil parameters
driving the soil water budget, the following vegetation parameters
were identified:

– leaf nitrogen content (Nleaf), which is directly involved in the
photosynthesis calculation. Experimental measurements have
shown that this parameter is highly correlated with leaf chlor-
ophyll content (CHL, µg cm−2) for sun leaves (see Section 4.7),

– annual maximum leaf mass per area (LMA) of sun leaves (leaves of
the canopy that are not shadowed by other leaves), a parameter
that enables conversion of leaf area to leaf biomass (Bleaf), which is
used in many processes in the model,

– annual maximum leaf area index (LAI), which drives many
processes like radiation interception, canopy photosynthesis and
litter amount.

The objective of the present study is to assess the possibility of
estimating essential parameters of forest ecosystemmodels (LMA, LAI,
CHL and Bleaf) using hyperspectral satellite images on large areas, and
to estimate the obtained accuracy.

The use of indices on hyperspectral images has two major
advantages. First, the most informative wavelengths of the 400–
2500 nm region can be selected. Second, it allows the use of a narrow
spectrum feature necessary for assessing vegetation biochemical
properties (Broge & Mortensen, 2002). Many studies have shown that
hyperspectral measurements can be used to quantify biophysical
characteristics of the vegetation at leaf scale (Gitelson et al., 2003; le
Maire et al., 2004; Zhao et al., 2005) or at canopy scale using in situ
data, airborne sensors like AVIRIS, CASI and HyMap, or spaceborne
sensors like Hyperion and CHRIS.

Different methods exist to retrieve canopy characteristics from
reflectancemeasurements (Blackburn, 2007; Kimes et al., 2000;Weiss
& Baret, 1999):

(i) Indices and/or multiple regressions: the principle is to combine
several reflectances measured on narrow or large spectral
bands intomathematical combinations and to correlate them to
a particular characteristic of the observed surface. These
relationships are calibrated based on an experimental or
simulated reflectance database (built up on radiative transfer
models). These methods are simple, but have some limits:
when calibrated to an experimental database, the representa-
tiveness of the relationships is limited to the representativeness
of the database. Moreover, indices and multiple regressions
may be sensitive to more than one single characteristic. They
are also sensitive to atmospheric conditions, view geometry,
and spatial resolution, and therefore they must usually be
calibrated for each image.

(ii) Model inversions: this method uses models that simulate
reflectance spectra from canopy and soil characteristics. As
noted by Bacour et al. (2006), inversion techniques based on
pre-computed reflectance database are often preferred to more
computationally heavy iterative methods for operational
applications. Among the computationally efficient methods
often used are Look-Up Tables (e.g. Knyazikhin et al., 1998) and
Neural Networks (e.g. Bacour et al., 2006; Baret et al., 2007).
Both methods are dependent on the simulated training
database. Inversion of such models often gives a large number
of different possible solutions. Moreover, uncertainties in
measurements and models may result in large variation in
results (Combal et al., 2003).

The best way to find efficient indices would be to use a large
measurement database, with many images and canopy conditions.
Such a large database with hundreds of measurements is feasible at
the leaf scale but is not conceivable at the forest scale. Moreover,
indices calibrated on a particular forest canopy database could be
unsuitable in other forests.

This issue leads us to create a large synthetic database containing
reflectance spectra and their corresponding canopy characteristics.
Such a database has many advantages: many canopy characteristics
are represented (thousands of spectra); the influence of each
characteristic can be totally decoupled from that of others; and the
effect of a particular characteristic on the spectra is based on physical
processes that are modeled at a small scale. Therefore, well
established indices obtained on such a large simulated database
may potentially be applied to a wide range of spectra. However, the
use of a model relies on its capacity to correctly simulate the
reflectance of a wide range of canopies. Thus, it is essential to test
these indices on experimental measurements. The representativeness
of the simulated database is therefore critical.

In this study, we generate two simulated databases, one at leaf
scale with the PROSPECT model, and one at canopy scale coupling the
PROSPECT leaf model with the SAIL canopy radiative transfer model
(PROSAIL). At leaf scale, we continue the study done in le Maire et al.
(2004) using an improved and newly calibrated version of the
PROSPECT model (Feret et al., 2008), and a larger experimental
database. The work at this scale is a first step to interpret the results at
the canopy scale and explain possible discrepancies. At canopy scale,
we use a multi-layer version of the SAIL model (Weiss et al., 2001),
which is able to represent the vertical LMA profile. The study is
restricted to canopies with LAI greater than 3 to correspond with the
big-leaf representation of SAIL. These simulated databases are used to
find best indices of CHL and LMA at leaf scale, and CHL, LMA, LAI and
Bleaf at canopy scale.

Results are tested against measurements at both scales. At leaf
scale we used a large database of 246 spectra and 49 species. At
canopy scales, experimental measurements consist of ground mea-
surements on small and mature canopies with a portable spectro-
radiometer, and hyperspectral images for two distinct forests
measured with the Hyperion satellite.

We first describe the PROSPECT and SAIL models, simulated
databases and the determination method of best spectral indices.
Then, we present the experimental protocols for the measurements
(leaf reflectance measurements, in situ measurements and satellite
remote sensing data). The results are given at leaf and canopy scale for
the determination of CHL, LMA, LAI and leaf biomass.

2. Model description, simulated databases and best indices
determination method

2.1. The Leaf reflectance model PROSPECT

An improved (1-nm resolution) and recalibrated version of the
leaf reflectance model PROSPECT has been used in this study (Feret
et al., 2008). The PROSPECT model (Jacquemoud & Baret, 1990;
Jacquemoud et al., 1996) considers the leaf as a succession of
absorbing layers. The new version calculates the leaf hemispherical
reflectance and transmittance between 400 and 2500 nmwith a 1-nm
step as a function of leaf structure index (Nstruc), leaf chlorophyll content
(CHL, µg/cm2), leaf water content (Cw, g/cm2), and leaf mass area (LMA,
g/m2).

2.2. Multi-layer PROSAIL model description

The SAIL radiative tranfer model is a turbid medium model. It
describes the canopy as horizontally homogeneous, where leaves
absorb, reflect, and transmit radiation (Verhoef, 1984). This model has
been validated by many studies on numerous vegetation types (e.g.
Andrieu et al., 1997; Goel & Thomson, 1984; Major et al., 1992). The
radiative transfer equation is solved using an n-flux approximation.
The radiation is considered as four fluxes: diffuse, direct, upward and
downward (Kubelka & Munk, 1931; Suits, 1972). The system is
described as four differential equations for the four fluxes. The solar
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