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Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of
such disturbances requires knowledge of host species distribution patterns on the landscape. In this study,
we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura
fumiferana) to facilitate landscape scale planning and modeling of outbreak dynamics. We used multi-
temporal, multi-seasonal Landsat data and 128 ground truth plots (and 120 additional validation plots) to
map basal area (BA), for 6.4 million hectares of forest in northern Minnesota and neighboring Ontario. Partial
least-squares (PLS) regression was used to determine relationships between ground data and Landsat sensor
data. Subsequently, BA was mapped for all forests, as well as for two specific host tree genera (Picea and
Abies). These PLS regression analyses yielded estimates for overall forest BA with an R? of 0.62 and RMSE
0f 4.67 m? ha™! (20% of measured BA), white spruce relative BA with an R? of 0.88 (RMSE=12.57 m? ha™' [20%
of measured]), and balsam fir relative BA with an R? of 0.64 (RMSE=6.08 m? ha™' [33% of measured]). We also
used this method to estimate the relative BA of deciduous and coniferous species, each with R? values of 0.86
and RMSE values of 9.89 m? ha™! (23% of measured) and 9.78 m? ha™' (16% of measured), respectively. Of
note, winter imagery (with snow cover) and shortwave infrared-based indices - especially the shortwave
infrared/visible ratio - strengthened the models we developed. Because ground measurements were made
largely in forest stands containing spruce and fir, modeled results are not applicable to stands dominated by
non-target conifers such as pines and cedar. PLS regression has proven to be an effective modeling tool for
regional characterization of forest structure within spatially heterogeneous forests using multi-temporal
Landsat sensor data.
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1. Introduction 2002). Because of their host-specific nature, spruce budworm out-

breaks are responsive to the abundance and spatial distribution of

Compared to other forest disturbances, insects and disease
influence the largest area of forests in both the U.S. and Canada,
affecting an estimated 20.2 million hectares in the U.S. with economic
costs over $1.5 billion (Dale et al., 2001). The understanding and
effective management of such disturbances requires knowledge of the
distribution and patterns of host species for insects and diseases. This
facilitates understanding of the potential for large-scale disturbances,
such as severe insect outbreaks, but also provides the context to
understand the likely consequences of outbreaks on a regional scale,
such as changes in tree species composition, age structure, and fuel
conditions (Hadley, 1994; White & Host, 2003; Williams & Birdsey,
2003). One of the most destructive insects to North American spruce-
fir forests is the spruce budworm (Choristoneura fumiferana), whose
widespread, recurrent outbreaks (see Blais, 1983; Erickson & Hastings,
1978; Williams & Birdsey, 2003) are a primary driving force shaping
the structure, function, and fire history of these forests (Fleming et al.,
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their host and, consequently, are also suspected of sensitivity to
feedback related to forest succession and change (Bergeron & Leduc,
1998; Hessburg et al., 1999).

Forest change, attributed primarily to increased effectiveness of
fire suppression in the Border Lakes region of northern Minnesota and
neighboring Ontario over the last century, has resulted in the con-
version of pioneer species such as jack pine (Pinus banksiana) and
quaking aspen (Populus tremuloides), to mixed-age, shade-tolerant
species composed of white spruce (Picea glauca), black spruce (Picea
mariana), balsam fir (Abies balsamea), and white cedar (Thuja
occidentalis) (Baker, 1992; Frelich & Reich, 1995; Scheller et al.,
2005). In recent decades, growth in demand for pulpwood has led
to forest management strategies (e.g., clear-cutting) that promote
growth of increasingly large, homogenous areas of aspen-fir forest
associations (Blais, 1983; Wolter & White, 2002) which have greatly
altered this region's landscape structure and dynamics (Pastor et al.,
2005; White & Host, 2003; Wolter & White, 2002).

Because spruce budworm host-species such as balsam fir have
become more dominant in the landscape, the probability of new


mailto:ptwolter@wisc.edu
http://dx.doi.org/10.1016/j.rse.2008.07.005
http://www.sciencedirect.com/science/journal/00344257

3972 PT. Wolter et al. /| Remote Sensing of Environment 112 (2008) 3971-3982

outbreaks has also increased (Blais, 1983; Sturtevant et al., 2004). Early
efforts to understand spruce budworm dynamics in this region
identified three key stand characteristics that explained 56% of the
variation in balsam fir mortality following an outbreak: percent basal
area (BA) in spruce, percent BA in non-host species, and BA of balsam
fir (Batzer, 1969). Spatially explicit forest landscape simulation models
such as LANDIS are well suited to study the potential effects of
multiple spatially interactive drivers of ecological change on future
forest composition (Scheller & Mladenoff, 2005). Efforts to model and
manage for insect impacts at landscape and regional scales therefore
depend on the availability of spatially explicit data on host species
distribution. Satellite remote sensing represents a valuable source for
supplying input data for regional simulation modeling.

1.1. Study objective

The broad objective of the study is to map the distribution and
abundance of spruce budworm host species (fir and spruce) in the
northeastern Minnesota and adjacent Ontario to better understand
the dynamics of this insect and identify landscape-scale management
strategies that may minimize outbreak frequency and severity. The
specific goal of this paper is to demonstrate a novel approach for
modeling and mapping forest basal area (BA) and species abundance
using readily available sources of remote sensing data. We employ
partial least-squares (PLS) regression with multi-temporal Landsat
sensor data to map spruce (P. glauca, P. mariana) and fir (A. balsamea)
distribution and BA for a 6.4 million hectare area covering the Border
Lakes region of northern Minnesota, U.S.A. and northwestern Ontario,
Canada (Fig. 1). The strategy involves use of all the reflectance bands of
Landsat-5 and -7 plus several spectral indices (SI) derived from these
sensor data for multiple image dates per WRS-2 path and row. PLS is
used with Landsat data and field data to produce models for mapping
total forest BA (TBA), relative BA of fir (FIR), relative BA of spruce
(SPRUCE), relative BA of deciduous forest (DEC), and relative BAs of
coniferous forest (CON). While PLS has been used extensively with
hyperspectral data (Coops et al., 2003; McDonald et al., 2003; Ourcival
et al., 1999; Smith et al., 2002, 2003; Townsend et al., 2003), we
demonstrate the capability of the algorithm to handle multi-temporal,
broad band, satellite sensor data. PLS regression is convenient as it: 1)
allows simultaneous modeling of multiple continuous predictor
variables; 2) does not make unrealistic assumptions about spectral
or ground measurement error, such as in ordinary least-squares
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Fig. 1. Study area in northern Minnesota and northwestern Ontario showing the six
Landsat footprints and the Border Lakes focus area in red. The region includes land
ownerships with varying forest management strategies: Chippewa National Forest
(1), Superior NF (2), BWCA Wilderness (3), Voyageurs National Park (4), and Quetico
Provincial Park (5).

regression (Cohen et al., 2003; Curran & Hay, 1986); and 3) addresses
the problem of collinearity (dependence) among multiple indepen-
dent and dependent variables (Helland, 1988).

1.2. Background

1.2.1. Partial least-squares regression

PLS is a predictive, 2-block regression strategy that uses estimated
linear, latent variables or components, obtained through optimization
of covariance measures (Nielsen, 2002), to simultaneously analyze
two data sets (e.g., spectra and physical/chemical properties) collected
from a single object of interest (Norgaard et al., 2000). PLS identifies a
select number of eigenvectors from an independent data matrix
capable of generating score values that capture predictor variance and
are highly correlated with the response variables (Arenas-Garcia &
Camps-Valls, 2007). Contrary to ordinary least-squares and multiple
linear regression, PLS regression does not assume zero error in the
predictor data (often falsely assumed for image data, Curran & Hay,
1986). PLS regression assumes that, if well sampled, vectors in the
predictor space (irrespective of error) should provide superior
predictive power for additional observations when there is a high
degree of correlation among predictor variables (SAS, 2000). Ulti-
mately, PLS regression seeks a balance between explaining variations
in both response and predictor variables (SAS, 2000).

PLS regression was formulated out of a need to model information-
scarce datasets in the social sciences (Wold, 1966, 1975). Kowalski
et al. (1982) extended the use of PLS regression to chemometric
applications using full-spectrum radiometer data. The PLS regression
method is attractive because it provides a means to reduce a large
number of collinear variables into relatively few relevant, non-
correlated, latent structures or components (Norgaard et al., 2000).
PLS regression differs from principal components regression (PCR) in
that it uses the covariance between X and Y variables to form latent
variables. As a result, variance among the Y variables is described
better than the principal components of PCR that are based solely on
the X variables (Zang et al., 2007). PLS regression is also superior to
canonical correlation analysis (CCA) in situations where there are
fewer observations with respect to variables, as PLS strives to
maximize covariance, rather than correlation, between latent compo-
nents (Zang et al., 2007).

In traditional multiple linear regression, when there are more
samples than independent variables (e.g., full-spectrum remote sensing
data) an exact solution for the regression coefficients (B vector) is not
possible without minimizing the length of the residual vector. This may
be accomplished using the least-squares method:

B = (X/X)'XY. (1)

However, in the presence of collinearity among the X vector
variables, an inverse for X’X may not be possible, causing instability
among regression coefficients (Geladi & Kowalski, 1986). PLS regres-
sion reduces the rank of the X’X matrix by using a subset of the X’X
eigenvectors, known as principal components or latent variables
(hereafter referred to as components), to represent X’X in Eq. (1)
(Wold et al.,, 1984) giving it the form of a generalized inverse
(Marquardt, 1970). The resultant model is composed of two outer
relations derived from the eigenstructure decomposition of X and Y as
well as an inner relation coupling the X and Y score matrices (Geladi &
Kowalski, 1986).

The key to PLS regression is deciding how many components to use
for a given model complexity. While it is possible to compute as many
components as there are predictor variables, a smaller initial number
of components are typically computed (see SAS, 2000). This allows
lower order components — often describing random measurement
error as well as retaining collinearity problems (Geladi & Kowalski,
1986) - to be discarded and reduces the chance of over fitting the
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