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Abstract

Burn severity is a key factor in post-fire assessment and its estimation is traditionally restricted to field work and empirical fitting from
remotely sensed data. However, the first method is limited in terms of spatial coverage and cost effectiveness and the second is site- and data-
specific. Since alternative approaches based on radiative transfer models (RTM) have been usefully applied in retrieving several biophysical plant
parameters (leaf area index, water and dry matter content, chlorophyll), this paper has applied the inversion of a simulation model to estimate burn
severity in terms of the Composite Burn Index (CBI). The performance of the model inversion method was compared to standard empirical
techniques. The study area chosen was a large forest fire in central Spain which occurred in July 2005. The model inversion showed the most
accurate estimation for high severity levels (for CBIN2.7, RMSE=0.30) and for unburned areas (CBIb0.5, RMSE=0). In both methodologies,
the error associated to CBI from 0.5 to 2.7 was not acceptable (RMSEN0.7), because it is higher than 25% of the total range of the index. Finally,
burn severity maps from both methods were compared.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Forest fires are a critical factor of disturbance in worldwide
ecosystems. Their effects on soil and plants depend on frequency,
fire intensity, and fire residence time, as well as on plant resilience
and resistance (Pérez & Moreno, 1998). Moreover, the main
consequences of fire on plants and atmospheric emissions depend
largely on fire/burn severity. The term “fire severity”, which has a
long tradition within the forest fire research community, refers to
the combination of soil and overstory effects caused by fire
(Brewer et al., 2005; Chappell & Agee, 1996; Doerr et al., 2006;
Ryan&Noste, 1985; Turner et al., 1994;Wang, 2002;White et al.,
1996). More recently, other authors have used the term “burn
severity” to address the same concept (Chuvieco et al., 2005;
Chuvieco et al., 2006; Key, 2005; Key & Benson, 2004, 2005;
Parra & Chuvieco, 2005; Patterson & Yool, 1998). This discre-

pancy of terminology makes comparing map products potentially
ambiguous (Miller & Yool, 2002). To clarify these concepts, the
analysis of fire effects can be better classified in the context of the
fire disturbance continuum (Jain &Graham, 2004), which addres-
ses three different temporal phases: before the fire, during the fire
and after the fire. Within this framework, the term fire severity
indicates the direct effects of the combustion process and refers to
the active fire (direct effects of fire process). In contrast, burn
severity identifies the impact of fire on soil and plantswhen the fire
is extinguished, and it is related to the post-fire phase (what is left).
The latter definition will be used in this paper.

Burn severity is generally estimated using post-fire field data
(Moreno & Oechel, 1989; Pérez & Moreno, 1998), which con-
sider several variables as: depth of char, percentage of tree basal
area mortality (Chappell & Agee, 1996), decrease in plant cover
(Jain & Graham, 2004; Rogan & Yool, 2001), volatilization or
transformation of soil components to soluble mineral forms
(Turner et al., 1994; Wang, 2002; Wells & Campbell, 1979),
proportion of fine branches remaining on the canopy (Moreno &
Oechel, 1989), and degree of canopy consumption and mortality
(Doerr et al., 2006; Key&Benson, 2002; Patterson&Yool, 1998;
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Rogan & Franklin, 2001; Ryan & Noste, 1985; van Wagtendonk
et al., 2004). The poor spatial representation associated with field
methods and the cost of these approaches make it advisable to use
alternative methods.

Remote sensing can be potentially a sound choice to map
burn severity, since vegetation removal, soil exposure, changes
in soil and vegetation moisture content imply changes in reflec-
tance (Jakubauskas et al., 1990). Indeed, fire-related decreases
in chlorophyll content and vegetation moisture lead to decreases
in the visible and near-infrared (NIR) reflectance and increases
in the mid-infrared (SWIR) reflectance (White et al., 1996).

Since the amount of green biomass destroyed by fires depends
upon the burn severity, several authors have found good corre-
lations between vegetation indices, computed from post-fire
remotely sensed data, and burn severity (Díaz-Delgado et al.,
2003; Doerr et al., 2006; García-Haro et al., 2001; Hammill &
Bradstock, 2006; Ruiz-Gallardo et al., 2004; Sunar & Özkan,
2001). The Normalized Difference Vegetation Index (NDVI) has
been related to field measurements of burn severity (Chafer et al.,
2004; Hammill & Bradstock, 2006; Sunar & Özkan, 2001).
NDVI is defined as:

NDVI ¼ ðqNIR−qREDÞ
ðqNIR þ qREDÞ

ð1Þ

where ρNIR and ρRED are the reflectance of near infrared (NIR)
and RED bands respectively. However, according to White et al.
(1996), a single post-fire band 7 (SWIR) of Landsat Thematic
Mapper (TM) showed stronger correlations than NDVI. Like-
wise, Jakubauskas et al. (1990) used the 7/5 ratio of LandsatMulti
Spectral Scanner (MSS) to map the burn area and extract degrees
of burn severity. Other authors have found stronger correlations
for spectral indices using theNIR and short wave infrared (SWIR)
bands rather than the NDVI. Although, these NIR-SWIR indices
were originally designed to estimate plant water content (De
Santis et al., 2006; Fraser et al., 2000; Gao, 1996; Hunt & Rock,
1989), they have also proved useful to map burnt areas (López
García & Caselles, 1991) since burning implies a severe decrease
in plant and soil moisture contents. Themost effective NIR-SWIR
index for burn severity available in the literature is theNormalized
Burn Ratio (NBR) proposed by Key and Benson (2002):

NBR ¼ ðq4−q7Þ
ðq4þ q7Þ ð2Þ

where ρ4 and ρ7 are the reflectance of band 4 (NIR) and 7
(SWIR) of Landsat TM respectively. Since burn severity is
dependent on the pre-fire vegetation conditions, these authors
suggest the use of the temporal difference between pre- and post-
fire NBR (ΔNBR) values (Key & Benson, 2002):

DNBR ¼ NBRPRE − FIRE−NBRPOST − FIRE ð3Þ

This variable has been proposed as an operational index to
estimate burn severity from satellite data.

The post-burn approach (simple NBR) is less expensive than
the multi-temporal approach, and reduces the errors caused by

differences in geometric correction, in sensor calibration, in
sun-sensor geometry, in atmospheric effects and in plant
phenology. However, the use of a single post-image, without
the pre-burn reference image, leads to difficulties in mapping
spectrally similar areas such water and recent burns, or senescent
vegetation and older burns (Epting et al., 2005; Garcia &
Chuvieco, 2004; Pereira, 1999; Pereira & Setzer, 1993).

The ΔNBR index calculated from Landsat TM and ETM+
images have shown very strong correlation with burn severity
values estimated in the field in several study cases (Cocke et al.,
2005; Epting et al., 2005; Miller & Yool, 2002). A comparison
between ΔNBR calculated from Landsat-TM and Airborne
Visible and Infrared Imaging Spectrometer (AVIRIS) data,
showed very similar results (van Wagtendonk et al., 2004).

Other indices that include the mid-infrared spectral region
have also shown high correlations, according to Rogan and
Yool (2001) and van Wagtendonk et al. (2004), but generally
did not perform as consistently as the NBR index. Similarly, the
evaluation of six different approaches for classifying and
mapping fire severity using multi-temporal Landsat TM data,
performed by Brewer et al. (2005), confirms that the NBR
provides a flexible, robust and analytically simple approach.

As well as spectral indices, linear transformation techniques
have been used for the multi-temporal mapping of burn severity.
Patterson and Yool (1998) compared two linear transformation
techniques, the Kauth–Thomas (KT) and principal components
(PC) transforms, for mapping fire severity. The KTor “Tasselled
Cap” transform is sensitive to fire-induced changes in the
moisture content of soil and vegetation and, in this study,
produced betters result than the PC transform. Chuvieco (2002)
and Caetano et al. (1994) concluded that spectral mixture
analysis (SMA) proved to be efficient in detecting the charcoal
signal even in lightly burnt areas that kept a strong vegetation
signal, a situation that is typically considered to be problematic.
SMAwas considered advantageous over vegetation index-based
methods, due to its improved capability to distinguish burns
from other bare or sparsely vegetated areas (Caetano et al., 1996;
Díaz-Delgado et al., 2001). This technique was also successful
applied by Díaz-Delgado and Pons (1999) and Rogan and
Franklin (2001) to carry out the burn severity classification.

The studies previously referred to are based on empirical
approaches, which are relatively easy to compute, when a good
set of field data is available. However, empirical approaches
have also limitations due to the lack of physics introduced in the
retrieval technique which reduces their generalization power
(Weiss et al., 2000). Alternative approaches are based on
radiative transfer model (RTM) techniques. In the forward
mode, RTM help understand how the changes in plant
biophysical parameters modify the spectral response at both
leaf and canopy level, whereas inverse modelling uses spectral
signatures as inputs to quantify plant parameters. The latter
mode has been extensively used to estimate: leaf area index
(LAI) (Fang & Liang, 2003; Koetz et al., 2005), water and dry
matter content (Riaño et al., 2005; Zarco-Tejada et al., 2003),
and chlorophyll content (Zarco-Tejada et al., 2001). The results
of these studies are generally very precise, but the performance
of RTM greatly depends on whether the assumptions of the
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