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Abstract

The goal of fractional mapping is to obtain land cover fraction estimates within each pixel over a region. Using field, Ikonos and Landsat data
at three sites in northern Canada, we evaluate a physical unmixing method against two modeling approaches to map five land cover fractions that
include bare, grass, deciduous shrub, conifer, and water along an 1100 km north—south transect crossing the tree-line of northern Canada. Error
analyses are presented to assess factors that affect fractional mapping results, including modeling method (linear least squares inversion (LLSI) vs.
linear regression vs. regression trees), number of Landsat spectral bands (3 vs. 5), local and distant fraction estimation using locally and globally
calibrated models, and spatial resolution (30 m vs. 90 m). The ultimate purpose of this study is to determine if reliable land cover fractions can be
obtained for biophysical modeling over northern Canada from a three band, resampled 90 m Landsat ETM+ mosaic north of the tree-line. Of the
three modeling methods tested, linear regression and regression trees with five spectral bands produced the best local fraction estimates, while
LLSI produced comparable results when unmixing was sufficiently determined. However, distant fraction estimation using both locally and
globally calibrated models was most accurate using the three spectral bands available in the Landsat mosaic of northern Canada at 30 m resolution,
and only slightly worse at 90 m resolution. While local calibrations produced more accurate fractions than global calibrations, application of local
calibration models requires stratification of areas where local endmembers and models are representative. In the absence of such information,
globally calibrated linear regression and regression trees to estimate separate fractions is an acceptable alternative, producing similar root mean

square error, and an average absolute bias of less than 2%.
© 2006 Elsevier Inc. All rights reserved.
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1. Background

Conventional satellite remote sensing land cover maps are
based on hard classifiers, where pixels are assigned a single land
cover label. In areas that are relatively homogeneous at the level
of the minimum mapping unit (MMU) of moderate resolution
sensors, single land cover labels may be appropriate. However,
depending on the size of objects relative to the MMU and their
spatial distribution, pixels may be composed of more than one
object type, producing mixed pixels. Land cover legends used
to generate a hard classification deal with the mixed pixel
problem by including mixed land cover classes. For example,
most land cover legends include a mixed forest class composed
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of both conifer and deciduous land cover classes. Hard
classifiers can map forested arecas well due to the fact that
trees are large objects relative to the MMU, and often occur in
stands that are relatively homogeneous at that scale. In tundra
environments north of the tree line, objects such as shrubs are
small relative to the MMU and their distribution tends to be
governed by microclimate and microtopography, generally
leading to mixed pixels.

Tundra land cover classes in many legends such as the
Circumpolar Arctic Vegetation Map (CAVM) legend (Walker
etal., 2002) and the modified Federal Geographic Data Commit-
tee National Vegetation Classification System (FGDC-NVCS)
legend (Cihlar et al., 2003) contain many classes that are
composed of several vegetation types mixed with bare soil or
rock, and are described by the relative fraction each occupies in
descending order. These legends do not provide quantitative
fraction thresholds in the label descriptions to differentiate
among classes. Rather, they are intended to be used in a more
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qualitative manner, which is in contrast to forest land cover
classes that are often based on quantitative descriptions of
percent tree type and cover. Describing the percentage occur-
rence of relatively pure land cover fractions that comprise pixels
provides a quantitative land cover description. Mapping land
cover fractions has the added benefit of allowing subtle spatial or
temporal changes to be detected, and facilitates scaling land
cover information to coarser resolutions through summation
of finer scale fractions within the coarse scale pixel. Hard
classifiers present difficulties doing this when several fine scale
land cover types combine to produce a different land cover class
within the coarse resolution pixel. For example, deciduous and
coniferous fine scale forest pixels combine to produce a mixed
forest pixel at a coarser resolution.

Physical linear mixture modeling is based on the energy
conservation law in physics, which proposes that pixels can be
represented by the linear combination of areal fractions of pure
endmember signatures within the pixel instantaneous field of view
(IFOV) (Drake et al., 1999). Pure reference spectral signatures are
referred to as endmembers (EM) because they represent the case
where 100% of the sensor’s field of view is occupied by a single
cover type (Lillesand & Kiefer, 2000). Strictly speaking, EMs are
located at the extreme ends of a multidimensional scatter plot, but
when determined in this manner, they sometimes do not represent
a single meaningful cover type. In the current study, EMs are
selected based on the definition by Lillesand and Kiefer (2000) as
single, meaningful land cover types.

Spectral unmixing has frequently been performed to estimate
a small number of sub-pixel EM fractions from Landsat imagery.
The number and type of fractions are often determined based
on limitations related to both unmixing method and inherent
dimensionality of the spectral data. These constraints sometimes
do not allow unmixing of the number or type of EMs required to
model biophysical attributes on a landscape. In the current study,
we make a distinction between spectral unmixing as the use of
spectral endmembers input into a physical mixture model, as
opposed to fractional mapping, whereby fractions may be
derived through a number of modeling methods.

Numerous studies have applied linear spectral unmixing to
characterize land cover as a mixture of a few, simple EM types
related to the dimensionality of Landsat data. Kauth and Thomas
(1976) estimated the dimensionality of Landsat multispectral
imagery in developing the Kauth—Thomas Tasseled Cap
transformation to derive wetness, brightness and greenness
indices. In an analysis of Landsat ETM+ mixing space across a
broad range of spectrally diverse land cover types using
Principal Components Analysis (PCA), Small (2004) showed
that more than 98% of the variance contained in the 6 reflectance
channels of Landsat can be represented by the first three
principal components explaining the variance in substrate,
vegetation and dark surface EMs, but that all six components
may contain spatially coherent information. Unmixing studies
using Landsat imagery have also converged on a similar number
and set of EMs related to the dimensionality of the data and
methods used to unmix. Radeloff et al. (1999) applied linear
unmixing to detect budworm defoliation using a three EM model
consisting of shade, nonphotosynthethic vegetation and green

vegetation. Ridd (1995) produced a linear unmixing model
consisting of vegetation, impervious surface, and soil, which
was later modified by Wu and Murray (2005) by including low
and high albedo surfaces to account for variability of the
impervious EM. The 3—4 general EMs normally unmixed from
Landsat are limiting when attempting to characterize and map
biophysical parameters across a landscape. An accurate
biophysical description requires the vegetation EM to be broken
down further into vegetation type.

Most image unmixing applications in the literature assume
stable EM representation for all parts of the image. This
assumption is not easily met, as EMs can vary from pixel to
pixel within a scene (Song, 2005) or between scenes due to poor
inter-scene calibration. Methods have been developed to deal
with EM variability on a per-pixel basis, including the Multiple
Endmember Spectral Mixture Analysis (MESMA) and the
Carnegie Landsat Analysis System (CLAS). Both methods are
similar in that they generate a large number of linear unmixing
models using candidate EM signatures from field and image
data, and select among them on a per-pixel basis to meet certain
predefined error criteria. MESMA was developed in Roberts
etal. (1998) and has been applied to map chaparral communities
in Southern California to manage fire hazard. CLAS is an entire
processing system that includes automatic atmospheric correc-
tion and spectral unmixing and has been used to map selective
logging in the Amazon (Asner et al., 2005).

In an examination of EM variability in an urban environment,
Song (2005) determined that mean EM signatures from the
sampled distribution produce best vegetation unmixing results.
In another study examining the effects of EM variability in
predicting land cover from coarse (1 km) resolution data, Kerdiles
and Grondona (1995) took NOAA-AVHRR land cover signatures
from each of four windows and applied them using linear
unmixing to the remaining three. They determined that the
accuracy of fraction estimation decreased when signatures
extracted from one window were applied to estimate fractions
in another. Averaged land cover signatures from all four windows
were found to improve overall fraction estimates. Thus, EM bias
between regions implies that a local calibration is needed to
achieve good local unmixing results. However, application of a
locally calibrated unmixing model also requires knowledge of the
area over which EMs are representative. In the absence of such
information, global calibration using EM means sampled from all
locations can produce acceptable global unmixing results.

A study by Fernandes et al. (2004) also considered the
application of local EM signatures to unmix distant fractions.
They compared 1 km fractional land cover and continuous field
vegetation characteristic estimates from four different algo-
rithms and validated using both proximate (<100 km) and
distant (>400 km) Landsat land cover datasets. The four
algorithms they compared included linear least-squares inver-
sion (LLSI), a look-up table approach, artificial neural network,
and linear regression calibration. Fractional land cover estima-
tion was similar for the four methods for the proximate
validation dataset, producing average root mean square errors
(RMSE) in the range of 10—15% of Landsat land cover fractions.
However, the distant treatment produced average RMSEs of 19—
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