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a  b  s  t  r  a  c  t

Variational  methods  are  among  the  most  successful  approaches  in  the  estimation  of  optical  flow  between
two  images.  This  paper  presents  a  variational  energy  functional  that  incorporates  the global  model  of
Horn  and  Schunck  (1981)  and  the classical  model  of Nagel  and  Enkelmann  (1986)  as  a new  regularization
functional.  In  particular,  the  objective  of  this  paper  is to  combine  the advantages  of  both  these  models.
This  formulation  yields  a  dense  optical  flow,  preserves  discontinuities  in the flow  field,  and  provides  a
significant  robustness  against  outliers  (occlusions,  illumination  changes  and  noise).  The  proposed  varia-
tional  functional  is solved  by  an  efficient  numerical  scheme.  Stability  and  convergence  analysis  are  given
in  order  to show  the  mathematical  applicability  of  the  proposed  model.  Experimental  results  on different
datasets  verify  the  robustness  and  accuracy  of  the  proposed  model.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Recovery of optical flow from a sequence of images is a chal-
lenging problem in computer vision/image processing. Optical
flow is defined as a two dimensional (2D) velocity vector, which
arises either due to the motion of the objects in the scene or by
the motion of the observer/camera. The objective of its estima-
tion is to determine a displacement between two images. Optical
flow furnishes the dynamic information of an object between
the frames of a scene, i.e., how many units the pixel/object has
been moved compared to the previous frame. It has several appli-
cations in vision system such as 3D reconstruction, automatic
navigation, video surveillance, human action understating, med-
ical diagnosis [1–3]. Extraction of the optical flow has been also
used as a preprocessing step in many vision algorithms such as
visual control, motion parameter estimation, image segmentation,
etc.

Estimation of the optical flow is considered as an ill-posed prob-
lem. Thus, some additional constraints are required in order to
regularize the flow field during optical flow estimation. Many dif-
ferent models have been proposed to estimate the optical flow
starting from the seminal work [4,5] and attained an impressive
level of accuracy and performance. A global approach proposed by
Horn and Schunck [4] yields a dense flow, but it is experimentally
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sensitive to noise. A local approach proposed by Lucas and Kanade
[5] is robust under noise, but it is unable to yield dense flow.

Differential variational models are considered as successful
approaches for the estimation of optical flow. These approaches
achieved a good attention of researchers in the recent past [6–9].
The reasons are simplicity in modeling and good quality results.
The quality of an optical flow estimation model is judged based
on accuracy, discontinuity in the flow field and large motion.
In order to produce a stable motion, a larger region of integra-
tion is more desirable. However, it may  possible to have multiple
motions of the objects. Therefore, the estimation of a dense
and discontinuity preserving optical flow is a challenging task.
To achieve this, many assumptions are considered in different
variational models to get better performances. Recent models
like [10,11,9] include the additional constraints such as gradi-
ent constancy assumption and the convex robust data term to
obtain the impressive level of performance under outliers, noise
and to avoid the problem of local minima. Many of the vari-
ational models such as [6,7,12,13,8,14–16] considered different
constraints or regularizers to get a piecewise optical flow and
preserves discontinuity at the boundaries. Moreover, motion seg-
mentation and parametric models have been proposed to break the
motion field into several smooth and piecewise parts [17,18,6,13].
Nevertheless, these models still have lacked to provide dense
and discontinuity preserving optical flow simultaneously due
to the inherent characteristics of the parametric models. More
recently, Weinzaepfel et al. [19] proposed a descriptor matching
algorithm, named as deep matching for optical flow estimation
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in the variational approach, which boosts the performance of
the model for large motions. The deep matching algorithm is
based on a multi-stage architecture with six layers interleaving
max-pooling and convolutions, a construction akin to deep con-
volutional nets. In [20], Martinel et al. were given a brief overview
of the brain-inspired learning architectures consisting of artificial
neural networks (ANNs), neural trees (NTs), convolutional neu-
ral networks (CNNs) and extreme learning machines (ELMs) as an
introductory part. They proposed a new architecture that borrows
the strengths of ANNs, CNNs, NTs and ELMs, and combines them
into a unique system, which is named as extreme deep learning
tree (EDLT).

In this study, we provide a more efficient variational model to
estimate the optical flow. We  consider a variational energy func-
tional which combines the global model of Horn and Schunck [4]
and the classical model of Nagel and Enkelmann [8]. This helps to
lead a dense flow over a region and preserves discontinuities in
the optical flow. The formulated variational functional results into
a more efficient numerical scheme. The performance of the pro-
posed model is evaluated on various spectrum image sequences,
and compared with some existing models. The convergence analy-
sis of the numerical scheme is provided to support the applicability
of the model. The robustness of the proposed model are tested in
the presence of noise. The performance of the model is also tested
under different parameter settings.

The rest of the paper is organized as follows: Section 2
describes the optical flow constraints and the modified variational
energy functional with related Euler–Lagrange equations. Section
3 describes the numerical solution and the convergence analysis
of the scheme. Section 4 describes the experimental datasets and
evaluation methods followed by the experimental results. Conclu-
sions are given in Section 5.

2. Mathematical formulation of variational optical flow
model

2.1. Optical flow as variational problem

One of the key assumptions introduced in the estimation of opti-
cal flow is the constancy of image gray levels [4]. Let I(x, y, t) and
I(x + ıx, y + ıy, t + ıt) be the gray levels of a pixel in two  consec-
utive frames taken at a time interval ıt and positions (x, y) and
(x + ıx, y + ıy), respectively. Then by the constancy of gray levels
assumption, we have

I(x + ıx, y + ıy, t + ıt)  = I(x, y, t) (1)

where I : � ⊂ R
3 → R  represents a rectangular image sequence.

Using Taylor series expansion of the left-hand side of (1) and
neglecting the second or higher order terms, we have

uIx + vIy + It = 0 (2)

where u = ıx
ıt

and v = ıy
ıt

are the components of velocity in x- and
y-directions, respectively. The terms Ix, Iy and It denote the par-
tial derivatives of the intensity w.r.t. x, y and t, respectively. The
notations u(x, y) and v(x, y) are called the optical flow in x- and
y-directions, respectively. The expression derived in (2) is known
as the optical flow constraint (OFC), and demonstrates an impor-
tant role in the optical flow estimation. The solution of the problem
optical flow estimation is under-determined and therefore an extra
constraint on (u, v) is required in order to have a unique solution.
This constraint is known as smoothness constraint and tells that
neighboring pixels should have the uniform flow field in a small
area.

The seminal work of Horn and Schunck [4] minimizes the fol-
lowing energy functional to estimate the optical flow:
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where w := (u, v, 1)T . The first and second terms in the above
energy functional (3) are called the data and smoothness terms,
respectively. This smoothness term is controlled by a regulariza-
tion parameter ˛(> 0). The larger the value of  ̨ in (3), leads to the
smooth optical flow field. Therefore, if  ̨ � 0, then (3) reduces to
the following functional:
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It means that more influence is given to the smoothness constraint.
In a similar way, the smaller the value of  ̨ in (3), leads to a contin-
uous optical flow field. Therefore, when  ̨ → 0, then (3) reduces to
the following functional:

E(w) =
∫

�

(uIx + vIy + It)
2dxdy (5)

This shows that the total influence is given to the optical flow con-
straint.

2.2. Proposed variational optical flow model

In order to find much more intuitive understanding and improve
the robustness of the variational model, a modified version of the
energy functional (3) is defined as

E(w) =
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where � is a small positive constant. Our main objective is to min-
imize the above variational energy functional (6). The motivation
behind the variational energy functional (6) containing the addi-
tional square term is that to keep the minimization scheme simpler
and increase the robustness of the method.

The proposed energy functional (6) is the combination of the
models [4,8]. The model of [4] provides dense and smooth flow
inside each motion field, but unable to preserves discontinuity in
the optical flow, and therefore flow propagates in all the direc-
tions. The model [8] provides more sharp edges and boundaries
in the flow fields, and also preserves discontinuity in the optical
flow. Thus, it fuses the advantages of each of them. The advantages
to consider this additional term in (6) with respect to (3) can be
summarized into the following aspects:

• Given energy functional combines the advantages from [4] as well
as [8].

• Provides dense and smooth flow over each motion field, and
avoids the propagation of the optical flow from one region to
another.

• Efficiently preserves discontinuity in the optical flow.
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