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a  b  s  t  r  a  c  t

Source  localization  for mixed  far-field  and  near-field  sources  is  considered.  By  constructing  the  second-
order  statistics  domain  data  of array  which  is  only  related  to DOA  parameters  of  mixed  sources,  we obtain
the  DOA  estimation  of  all sources  using  the  weighted  �1-norm  minimization.  And  then,  we use  MUSIC
spectral  function  to distinguish  the  mixed  sources  as  well  as  to  provide  a  more  accurate  DOA  estimation
of  far-field  sources.  Finally,  a mixed  overcomplete  matrix  on  the  basis  of  DOA  estimation  is introduced
in  the  sparse  signal  representation  framework  to  estimate  range  parameters.  The  performance  of  the
proposed  method  is verified  by numerical  simulations  and  is  also  compared  with  two  existing  methods.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Source localization is a problem of great importance in many
fields such as radar, sonar, electronic surveillance and seismic
exploration [1]. Various high-resolution methods like MUSIC [2]
and ESPRIT [3] have been proposed to obtain the direction-of-
arrival estimation of far-field sources in the past decades. When the
sources are located at the near-field region, several efficient meth-
ods such as the two-dimensional (2-D) MUSIC [4], the high-order
ESPRIT [5] and the path following method [6] are also available.

In some practical applications, such as speaker localization using
microphone arrays [7] and guidance (homing) systems [8], both
far-field and near-field sources may  be encountered. In this case, all
the methods above may  not be expected to give satisfactory results
since they will mismatch the signal model. By constructing two spe-
cial cumulant matrices, Liang et al. [9] have developed a two-stage
MUSIC method for locating mixed sources. Instead of using cumu-
lant, He et al. [10] present a new approach by efficiently using the
second-order statistics based MUSIC method. Recently, Wang et al.
[11] utilize sparse signal reconstruction rather than the subspace
technique for mixed source localization, which exploits the prop-
erty that the locations of the point source signals are usually very
sparse relative to the entire spatial domain. It achieves high resolu-
tion and high estimation accuracy. However, there exists a problem
in this method [11] that the range grids set should include both
near-field region and far-field region, whether the source is near-
field one or far-field one. This will bring considerable computational
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burden. In addition, this method would fail in the presence of
Gaussian sources since it uses fourth-order cumulant [10].

In this paper, we  propose a new mixed source localization
method jointly using MUSIC and sparse signal representation. The
proposed method includes three steps: (i) transform the output
data of array into second-order statistics data and obtain the DOA
estimation of all sources using the weighted �1-norm minimi-
zation; (ii) utilize MUSIC spectra function to distinguish the mixed
sources and successively obtain a more accurate azimuth DOA
estimation of far-field sources; (iii) construct mixed overcomplete
matrix and apply it to estimate range parameters of near-field
sources. The proposed method is better suited for both Gaussian
and Non-Gaussian sources. Compared with the method addressed
in [10], the proposed method can provide an improved azimuth
DOA and range estimation accuracy of the near-field sources.
Moreover, it also performs better in estimating azimuth DOA of
far-field sources, as well as range parameters of near-field sources
in comparison with the method addressed in [11]. In addition, the
computational complexity of the proposed method is much lower
than that of [11].

The reminder of this paper is organized as follows: The mixed
near-field and far-field signal model based on a symmetric uniform
linear array is introduced in Section 2. The mixed source localiza-
tion method jointly using MUSIC and sparse signal reconstruction is
proposed in Section 3. Simulation results are presented in Section 4.
Conclusions are drawn in Section 5.

2. Mixed near-field and far-field signal model

We  consider the data model introduced by Liang and Liu [9]
for an array of 2M + 1 sensors receiving K (near-field or far-field)
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Fig. 1. Uniform linear array configuration.

source signals. The array configuration is shown in Fig. 1. Let the
array center be the phase reference point. After sampled with a
proper rate that satisfies the Nyquist rate, the signal received by
the mth sensor can be expressed as

ym(t) =
K∑

k=1

sk(t)ej�mk + nm(t), t = 0, . . .,  N − 1 (1)

where N is the snapshot number, sk(t) denotes the kth source signal,
nm(t) represents the additive Gaussian noise, and �mk indicates the
delay associated with the kth source signal propagation time from
0th to mth sensor. If the kth source is near-field one, �mk can be
given by

�mk = m�k + m2�k (2)

where �k and �k are called electric angles and given by

�k = −2�
d

�
sin(�k) (3)

�k = �
d2

�rk
cos2(�k) (4)

where �k and rk are the azimuth DOA and range of the kth near-
field sources, respectively. � and d denote the carrier wavelength
and intersensor spacing, respectively. Otherwise, if the kth source
is far-field one, �mk has the following form:

�mk = m�k. (5)

Thus, the far-field source can be regarded as a special case of
near-field source with �k = 0 or rk =∞.

Consequently, the mixed near-field and far-field signal model
can be rewritten as

y(t) = As(t) + n(t) = ANsN(t) + AF sF (t) + n(t) (6)

where A = [AN AF], s =
[
sT

N sT
F

]T
, and

AN = [aN(�1, �1), . . .,  aN(�K1 , �K1 )] (7)

AF = [aF (�K1+1), . . .,  aF (�K )] (8)

aN(�k, �k) =
[

e−jM�k+M2�k , . . .,  1, . . .,  ejM�k+M2�k

]T

(9)

aF (�k) = [e−jM�k , . . .,  1, . . .,  ejM�k ]T (10)

sN(t) =
[
s1(t), . . .,  sK1 (t)

]T
(11)

sF (t) =
[
sK1+1(t), . . .,  sK (t)

]T
(12)

where K1 and K − K1 denote the number of near-field sources and
far-field sources respectively and the superscript T stands for the
transpose operator.

Throughout the rest of the paper, the following assumptions are
required:

1. The source signals are statistically independent, zero mean sta-
tionary processes.

2. The sensor noise is zero-mean, circular Gaussian, spatially uni-
formly white and independent from the source signals.

3. The sensor array is a symmetric uniform linear array com-
posed of 2M + 1 sensors. To avoid an ambiguity of phase in
mixed sources localization scenario, the inter-element spacing
is d ≤ �/4, and the source number is K < M + 1.

3. Proposed method

3.1. DOA estimation of all sources

In this paper, second-order statistics is considered. The array
covariance matrix is defined as

R = E
{

y(t)yH(t)
}

= APAH + 	2I (13)

where P = E
{

s(t)sH(t)
}

= diag{P1, . . .,  PK } is the signal covariance
matrix, Pk is the power of kth signal, 	2 is the noise variance, E{ · }
and H denote the expectation and the conjugate transpose oper-
ation, respectively. The symbol diag{z1, z2} represents a diagonal
matrix with diagonal entries z1 and z2.

Let rp,q be the cross-correlation coefficient of the pth and qth
array output, which is defined by

rp,q = E
{

yp(t)y∗
q(t)

}
=

K∑
k=1

ap(�k, �k)a∗
q(�k, �k)Pk + 	2ıp,q (14)

where ap(�k, �k) is the (p, k)th element of A. ıp,q denotes the Dirac
delta function. From (13), we  can obtain that the anti-diagonal ele-
ments of array covariance matrix R can be expressed as

R(i, 2M + 2 − i) =
K∑

k=1

Pke−j2(M+1−i)�k + 	2ıi,2M+2−i (15)

where i ∈ [1, 2M + 1]. Therefore, for all i, we  can form the following
(2M + 1) × 1 signal model

� = [R(1,  2M + 1),  . . ., R(2M + 1, 1)]T = BP + 	2IM (16)

where

B = [b(�1), . . .,  b(�K )] (17)

b(�k) = [e−j2M�k , e−j2(M−1)�k , . . .,  1, . . .,  ej2M�k ]T (18)

P = [P1, . . .,  PK ]T and IM is a (2M + 1) × 1 vector, whose Mth element
is one and the others are zeros. Assume that the number of sources K
is known or correctly estimated by the Akaike information criterion
(AIC) or the minimum description length (MDL) detection criterion
[12]. Then the noise variance can be obtained by the average of the
2M + 1 − K smallest eigenvalues of R. Consequently, we  can obtain
a noise-free model

� 1 = � − 	2IM = BP. (19)

Note that formulation (19) can be considered as a spatial signa-
ture of the sources, which is dependent only on the information of
DOAs.

In sparse signal representation framework, Eq. (19) can be
rewritten as

� 1 = B� (
)P
K

(20)
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