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a  b  s  t  r  a  c  t

Oversampled  linear  phase  paraunitary  filter  bank  (OLPPUFB)  can  be efficiently  designed  via  lattice  struc-
ture.  Xu et  al.  have  studied  the  lattice  structure  for arbitrary-length  OLPPUFB  (ALOLPPUFB),  i.e.  OLPPUFB
with filter  length  KM  + ˇ, where  M is  the integer  decimation  factor,  K is an  integer,  and  ˇ is an  integer
between  0  and  M.  Such  work  was  restricted  to be used  for the case  with  equal  numbers  of  symmetric
and  antisymmetric  filters,  and  cannot  be easily  generalized  for  other possible  cases.  To  address  this  issue,
we  develop  in  this  letter  the  lattice  structure  for ALOLPPUFB  with  unequal  numbers  of  symmetric  and
antisymmetric  filters.  The  proposed  method  is  carried  out by  combining  the  polyphase  matrices  of  OLP-
PUFB  with  filter  length  KN,  where  N is  the  integer  decimation  factor,  K is an  integer.  The  efficiency  of  the
method  is  shown  by design  examples.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Oversampled filter bank (OFB) has been extensively used in sig-
nal processing [1,2]. One of the efficient methods for the design is
to employ lattice structure [3–26], which supplies fast and robust
implementation, as well as structural possession of important
properties such as linear phase (LP) and paraunitary (PU).

Several works have been published for lattice structures of over-
sampled linear phase paraunitary filter bank (OLPPUFB). For the
convenience of later discussion, the OLPPUFB with filter length KM
is named constrained-length OLPPUFB (CLOLPPUFB), whereas the
one with filter length KM +  ̌ (i.e. the one discussed in this letter)
is called arbitrary-length OLPPUFB (ALOLPPUFB). Up to now, the
lattice structure for OLPPUFB is mainly devoted to constrained-
length case. In 2000, Labeau et al. [27] established a necessary
condition for the existence of CLOLPPUFB on symmetry polarity
(i.e. the number of symmetric filters ns and antisymmetric filters
na), and designed the lattice structure for the case with ns = na and
the case with ns = na + 1. Three years later, Gan et al. [28] systemat-
ically studied the theory and design of CLOLPPUFB. They obtained
a more exact necessary condition for the existence of CLOLPPUFB,
and developed the lattice structures covering all possible cases of
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the condition. In contrast to CLOLPPUFB, ALOLPPUFB provides more
choices of filter bank and thus offers better trade-off between filter
length and filter performance. Nevertheless, only lattice structure
for the case with ns = na has been developed [29], and the other cases
still leave to be done and cannot be easily generalized from this
case.

To handle this problem and provide more choices of ALOLP-
PUFB, we describe in this letter the lattice structure of ALOLPPUFB
for the case with ns /= na. The design is carried out by combining
polyphase matrices of CLOLPPUFB, and the result can be used for all
possible cases when an ALOLPPUFB exists, no more than only the
considered case with ns /= na. Also by combing polyphase matri-
ces of constrained-length filter bank, we  [30] have designed the
lattice structure for arbitrary-length critically-sampled linear phase
paraunitary filter bank. Nevertheless, the difference is remarkable.
In contrast to [30], the sizes of several blocks in the design in this
letter have to be carefully set, and we determine the sizes based on
a new proposed lemma.

Some notations used in this letter are described as follows.
The ceil and floor of a real number x are represented by �x�
and �x� respectively. The numbers of symmetric and antisym-
metric filters are denoted by ns and na respectively. Define f(K,
s) = � K/2 � (1 + s)/2 + � K/2 � (1 − s)/2, where K is a non-negative inte-
ger and s = ±1; it can be easily checked that f(K, 1) + f(K, − 1) = K and
f(K, 1) ≥ f(K, − 1). The symbols I and J denote identity matrix and
exchange matrix respectively, and subscripts will be given if their
sizes are not clear from the context.
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2. Preliminaries

A P-channel filter bank with filter length KM +  ̌ is an ALOLP-
PUFB if the associated polyphase matrix satisfies the PU property
ET(z−1)E(z) = IM and the LP property E(z) = z−(K−1)DE(z−1)Ĵ(z),
where E(z) is the P × M polyphase matrix, D = diag(Ins , −Ina ) and is
named symmetry polarity matrix, Ĵ(z) = diag(z−1Jˇ, JM−ˇ), and K − 1
is called the order of the system. The ALOLPPUFB is degraded into
a CLOLPPUFB if  ̌ = 0.

As with CLOLPPUFB [28], the polyphase matrix of an order-
(K − 1) ALOLPPUFB can be represented as

E(z) =

⎧⎪⎨
⎪⎩

GK−1(z)· · ·G2(z)G1(z)E0(z), ns = na

G⌊
K − 1

2

⌋(z)· · ·G2(z)G1(z)E0(z), ns /= na (1)

where Gi(z) and E0(z) are called propagating block and starting block
respectively. The propagating block satisfies Gi(z) = z−N1 DGi(z−1)D,
where N1 = 1 when ns = na, and N1 = 2 when ns /= na [28]. The start-
ing block meets E0(z) = z−N0 DE(z−1)Ĵ(z), where N0 is the minimum
order of the starting block. One can easily check that, N0 = 0 when
ns = na, and N0 = mod(K − 1, 2) when ns /= na. As shown above, the
design of E(z) can be obtained by developing the building blocks
Gi(z) and E0(z). The construction of Gi(z) has been well formu-
lated in Eqs. (8) and (23) in [28]. Hence the key to the design of
an ALOLPPUFB is to create the starting block E0(z).

Xu et al. [29] have studied the theory and design of ALOLPPUFB.
They proposed in [29, Theorem 1] the necessary condition for the
existence of ALOLPPUFB on symmetry polarity. The condition was
devoted to all possible cases with different (M,  ˇ, K)’s, and we  refor-
mulate it in Lemma  1 so that one can handle different (M,  ˇ, K)’s
uniformly.

Lemma  1. Let r0 = f(ˇ, 1) + f(M − ˇ, 1) and r1 = f(ˇ, (− 1)K) + f(M − ˇ,
(− 1)K−1). As to an order-(K − 1) ALOLPPUFB, the numbers of symmet-
ric and antisymmetric filters ns and na satisfy r0 ≤ ns ≤ P − M + r1 and
M − r1 ≤ na ≤ P − r0.

As can be seen from Lemma  1, the upper bounds of ns and na

(denoted by ns,u and na,u) can be represented by their lower bounds
(represented by ns,l and na,l), i.e. ns,u = P − na,l and na,u = P − ns,l. We
therefore can proceed with the following discussion using only the
lower bounds, i.e.

ns≥r0, na≥M − r1.

Xu et al. have developed in [29] the lattice structure of ALOLPPUFB
for the case with ns = na, and the case with ns /= na still leave to be
done and will be discussed in next section.

3. Lattice structure for ALOLPPUFB

Theorem 1. Suppose that E(0)
0 (z) is the polyphase matrix of an order-

(N0 + 1) CLOLPPUFB with decimation factor  ̌ and symmetry polarity
matrix diag(Ix0 , −Iy0 ), and E(1)

0 (z) is the polyphase matrix of an order-
N0 CLOLPPUFB with decimation factor M −  ̌ and symmetry polarity
matrix diag(Ix1 , −Iy1 ), where N0 = 0 when ns = na, and N0 = mod(K − 1,
2) when ns /= na. Let

E0(z) = diag(Q0, Q1)Pdiag(E(0)
0 (z), E(1)

0 (z)) (2)

where Q0 and Q1 are ns × (x0 + x1) and na × (y0 + y1) free parauni-

tary matrices respectively, and P =

⎡
⎢⎣

Ix0

Ix1

Iy0

Iy1

⎤
⎥⎦. Let E(z) be

represented as in (1), then E(z) leads to an order-(K − 1) ALOLPPUFB.

Fig. 1. Lattice structure for the starting block E0(z).

Proof. From the fact that each matrix in (2) is PU, E0(z) is PU. From
the hypothesis about E(0)

0 (z) and E(1)
0 (z), one can obtain

E(0)
0 (z) = z−(N0+1)diag(Ix0 , −Iy0 )E(0)

0 (z−1)Jˇ (3)

E(1)
0 (z) = z−N0 diag(Ix1 , −Iy1 )E(1)

0 (z−1)JM−ˇ. (4)

Represent Q0 and Q1 into submatrices-form as Q0 = [Q00, Q01],
Q1 = [Q10, Q11], where the sizes of the submatrices are ns × x0,
ns × x1, na × y0, and na × y1 respectively. One can easily check that

diag(Q00, Q10) = Ddiag(Q00, Q10)diag(Ix0 , −Iy0 ) (5)

diag(Q01, Q11) = Ddiag(Q01, Q11)diag(Ix1 , −Iy1 ). (6)

Putting the submatrices-form of Q0 and Q1 into (2) leads to

E0(z) = [diag(Q00, Q10)E(0)
0 (z), diag(Q01, Q11)E(1)

0 (z)]

which, along with (3)–(6), produces E0(z) = z−N0 DE0(z−1)Ĵ(z). From
this equation, coupled with the PU property of E0(z), one can get
that E0(z) will yield an order-N0 ALOLPPUFB.

Since each propagating block Gi(z) is PU and, as can be easily
seen from (1), the sum of the orders of all propagating block is K − 1
for even M and 2� K/2 � for odd M.  Along with value of N0, one can
conclude that E(z) will produce an order-(K − 1) ALOLPPUFB. �

Let us check when we  can find an ALOLPPUFB based on Theorem
1. This relies on the existences of the blocks Gi(z), Q0, Q1, P, E(0)

0 (z)

and E(1)
0 (z). The blocks Gi(z) and P can be found without constraints.

The blocks Q0 and Q1 exist if

ns≥x0 + x1, na≥y0 + y1. (7)

According to [28], E(0)
0 (z) and E(1)

0 (z) can be obtained if

x0≥f (ˇ, 1),  y0≥  ̌ − f (ˇ, (−1)N0+1) (8)

x1≥f (M − ˇ, 1),  y1≥M −  ̌ − f (M − ˇ, (−1)N0 ) (9)

and their constructions have also been published in [28]. Based on
Lemma  2 as shown later, if ns and na satisfy Lemma 1, one can
always find x0, x1, y0 and y1 meeting (7)-(9). Hence Lemma 1 is also
sufficient for the existence of ALOLPPUFB. Though we focus on the
case with ns /= na in this letter, the proposed design in Theorem 1
can be used for all possible cases, i.e. the cases restricted by Lemma
1. As mentioned before, the key to the design is to construct E0(z),
and we  depict in Fig. 1 the construction of E0(z) obtained using
Theorem 1.

Lemma  2. If ns and na satisfy Lemma 1, then there exist x0, x1, y0
and y1 meeting (7)–(9).

Proof. By Lemma  1, we have

na≥(  ̌ − f (ˇ, (−1)K )) + (M −  ̌ − f (M − ˇ, (−1)K−1)) (10)

ns≥f (ˇ, 1) + f (M − ˇ, 1).  (11)

When ns /= na, from the fact that N0 = mod(K  − 1, 2), Eq. (10)
becomes

na≥(  ̌ − f (ˇ, (−1)N0+1)) + (M −  ̌ − f (M − ˇ, (−1)N0 )). (12)
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