Computer Communications 35 (2012) 1472-1483

Contents lists available at SciVerse ScienceDirect

computer
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Overload control in SIP networks using no explicit feedback: A window
based approach

Seyed Vahid Azhari*, Maryam Homayouni, Hani Nemati, Javad Enayatizadeh, Ahmad Akbari

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

ARTICLE INFO ABSTRACT

Article history:

Received 2 August 2011

Received in revised form 20 February 2012
Accepted 14 April 2012

Available online 23 April 2012

The Session Initiation Protocol (SIP) has gained momentum and is being widely used both in the Internet
and Next Generation Telecommunications networks as the core signaling protocol. SIP operation relies on
SIP servers which are responsible for routing SIP messages. It has been shown that the performance of SIP
servers is largely degraded during overload periods due to the built in message re-transmission mecha-
nism of SIP. In this paper we propose a distributed and end-to-end adaptive window based overload con-
trol algorithm, which does not use explicit feedback from the downstream server. Upstream servers use
call establishment delay as a measure of the amount of load on the downstream server. Therefore, the
proposed algorithm imposes no additional complexity or processing on the downstream server which
is overloaded, making it a very robust approach. Using simulations we show that our proposed method
achieves higher throughput than a commonly used overload control algorithm and is also fair among dif-
ferent upstream servers under different network latencies. To the best of our knowledge, fairness under
different network latencies has not been previously addressed in the context of SIP overload control. In
addition, compared with approaches using explicit feedback, our scheme is less sensitive to network
latency. The proposed overload control algorithm is also implemented in the OpenSIPS open source SIP

Keywords:

SIP

Overload control
Window based
Fairness

proxy and shown to perform as expected under various conditions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Session Initiation Protocol (SIP) [1] is an application layer sig-
nalling protocol standardized by IETF and used for initiating, mod-
ifying and tearing down multimedia sessions. It is believed that SIP
can facilitate creating services over Next Generation Networks
(NGN). In fact SIP has been recently adopted by the 3rd Generation
Partnership Project (3GPP) as the main signaling protocol of the IP
Multimedia Subsystem (IMS).

Providing carrier grade service over SIP-enabled NGN, necessi-
tates providing mechanisms for handling SIP traffic surges that
overload SIP servers. A list of causes for overload is provided in
RFC5390 [2] including, poor capacity planning, component failures,
avalanche restart, flash crowds and denial of service attacks. The
overload condition is exacerbated when SIP uses UDP and provides
application layer reliability via re-transmitting all non-served re-
quests increasing server load in a regenerative way [3-5]. Although
using TCP, to some extent, improves server performance in over-
load, it poses scalability problems as pointed in [6,7]. By far, UDP

* Corresponding author.
E-mail addresses: azharivs@iust.ac.ir (S.V. Azhari), mhomayouni@comp.iust.ac.ir
(M. Homayouni), nemati@comp.iust.ac.ir (H. Nemati), j_enayati@comp.iust.ac.ir (J.
Enayatizadeh), akbari@iust.ac.ir (A. Akbari).

0140-3664/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2012.04.013

is the most common choice of transport for SIP and we will assume
that SIP is running on UDP throughout this paper.

In this paper we propose a novel distributed SIP overload con-
trol algorithm, which does not require explicit feedback. Our ap-
proach uses call setup delay measured by the upstream server as
an indication of overload at some downstream server. Using this
information, the upstream server controls the signaling load im-
posed on the downstream server using an adaptive window based
approach, which is shown to achieve very high throughput and be
fair. Our approach has virtually no impact on the overloaded ser-
ver, in particular, the overloaded server does not have to deal with
the burden of generating feedback and possibly even rejecting
calls. Also, being window based it enjoys a self-clocking feature
which has been shown to improve stability of Internet congestion
control algorithms [8]. We simulate our proposed scheme under
different SIP network topologies and conditions, including steady
and dynamic load, non-zero network latency and packet loss. The
proposed overload control algorithm is also implemented in the
OpenSIPS open source SIP proxy [9] and shown to perform as
expected.

The rest of this paper is organized as follows: Section 2 includes
an overview of the SIP protocol, existing overload control methods
and our contribution. Section 3 provides the details of the proposed
overload control algorithm. In Section 4 we present our simulation


http://dx.doi.org/10.1016/j.comcom.2012.04.013
mailto:azharivs@iust.ac.ir
mailto:mhomayouni@comp.iust.ac.ir
mailto:nemati@comp.iust.ac.ir
mailto:j_enayati@comp.iust.ac.ir
mailto:akbari@iust.ac.ir
http://dx.doi.org/10.1016/j.comcom.2012.04.013
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

S.V. Azhari et al./ Computer Communications 35 (2012) 1472-1483 1473

—
SIP Proxy Proxy
UA server 1 server 2 Sip
UA
INVITE
> INVITE > INVITE -
P 100 Trying d r g
) - .
180 Ringing 180 Ringing 180 Ringlng
200 OK 200 OK
200 OK
ACK
> ACK . ACK >
Ll
RTP Media Path -
<€ >
BYE BYE BYE
200 OK 200 OK 200 OK
Time |«
y \/
\ \4

Fig. 1. Basic SIP call flow.

model and network topologies. Section 5 includes performance
evaluation results obtained by simulation compared with two
other well-known schemes. This section also considers the effect
of network latency on throughput as well as fairness of the pro-
posed scheme. Section 6 discusses some practical issues of employ-
ing our solution and includes experimental results obtained from
our testbed. Finally Section 7 concludes the paper and outlines fu-
ture work.

2. Background and contribution
2.1. SIP overview

Fig. 1 shows the typical SIP trapezoid topology and the standard
SIP voice call signaling consisting of the INVITE-BYE message se-
quence. Setting up a session starts when the caller (User Agent Cli-
ent: UAC) sends an “INVITE” request to the callee (User Agent
Server: UAS), which is routed through SIP proxies in the path be-
tween them. The reception of this request in each proxy is con-
firmed by returning a “100 Trying” response to the previous hop
in the path. Once the UAS receives the INVITE request, it sends back
a “180 Ringing” response to the caller. It later also sends back a
“200 OK” response when the call is accepted by the application
in charge of taking the call. Finally to acknowledge receipt of
“200 OK”, an “ACK” request is sent to the callee. After this three
way handshake, the media session is independently established
between the two parties. The session is then terminated when
one party sends a “BYE” request and the other responds with a
“200 OK”.

2.2. SIP overload problem

SIP uses its own reliability mechanism specially when used on
top of an unreliable transport protocol, such as UDP, using a large
set of re-transmission timers. For example, timer A is responsible
for scheduling INVITE re-transmissions and starts with an initial
value of typically T; = 500 ms and doubles whenever expires. SIP
will stop re-transmitting and declare call failure after waiting
64 x T; = 32 s.This mechanism is useful in case of having unreliable

links, but is a major cause of performance degradation in overload
conditions.

During overload, messages arriving at the overloaded server
either get dropped or incur large delay. As a result, the UACs
(and also possibly the upstream proxy) start re-transmitting unac-
knowledged messages. Furthermore, incoming responses from the
UAS also experience loss or extensive delay before being processed
by the server. This causes the server itself to re-transmit part of the
requests it has already forwarded to the UAS. Therefore, the actual
server load increases in a regenerative way leading to call failures.
The dramatic decrease in server throughput is shown in Fig. 2 by
the curve labeled “No-Ctrl”. Here the SIP server can handle a max-
imum load of 200 calls per second (cps). When the load increases
beyond this value the server becomes overloaded and congestion
collapse occurs. Similar behavior have been reported in [3,4] and
many others. We have also evaluated SIP server performance in a
real test-bed and obtained similar results [5].

2.3. Related work on SIP overload control

The goal of SIP overload control (OC) is to keep server through-
put close to its capacity in the presence of overload. The curve la-
beled “Theoretical” in Fig. 2 shows how an ideal OC scheme would
work when server throughput is 200 cps. A system model for SIP
overload control is introduced in [10] determining where the con-
trol loop components reside and the degree of cooperation be-
tween the SIP servers during overload condition. In general, there
are two ways to control overload; local and distributed. In local
overload control, the control loop is implemented internally on
the overloaded server [10], therefore, a SIP server starts rejecting
additional requests when getting close to its capacity limit. This
is done by sending a 503 Service Unavailable message in response
to an INVITE [1]. A number of local overload control methods dif-
fering mainly in the rejection policy and the overload detection cri-
teria are proposed and evaluated in the literature.

Queue length based algorithms have been proposed in
[3,11,4,12]. Occupancy based algorithms, namely OCC, using CPU
utilization as a trigger for rejecting calls have also been proposed
in [3,11] (Fig. 2 “Local-OCC”). In addition, the effect of priority
queuing and transport protocol on SIP signaling performance is



Download English Version:

https://daneshyari.com/en/article/446155

Download Persian Version:

https://daneshyari.com/article/446155

Daneshyari.com


https://daneshyari.com/en/article/446155
https://daneshyari.com/article/446155
https://daneshyari.com

