Computer Communications 35 (2012) 810-819

journal homepage: www.elsevier.com/locate/comcom

Contents lists available at SciVerse ScienceDirect

Computer Communications

computer
communications

Space efficient deep packet inspection of compressed web traffic

Yehuda Afek?, Anat Bremler-Barr !, Yaron Koral *

2 Blavatnik School of Computer Sciences, Tel-Aviv University, Israel
b Computer Science Dept., Interdisciplinary Center, Herzliya, Israel

ARTICLE INFO ABSTRACT

Article history:
Available online 28 January 2012

Keywords:

Pattern matching
Compressed http
Network security

Deep packet inspection

In this paper we focus on the process of deep packet inspection of compressed web traffic. The major lim-
iting factor in this process imposed by the compression, is the high memory requirements of 32 KB per
connection. This leads to the requirements of hundreds of megabytes to gigabytes of main memory on a
multi-connection setting. We introduce new algorithms and techniques that drastically reduce this space
requirement for such bump-in-the-wire devices like security and other content based networking tools.
Our proposed scheme improves both space and time performance by almost 80% and over 40% respec-
tively, thus making real-time compressed traffic inspection a viable option for networking devices.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Compressing HTTP text when transferring pages over the web is
in sharp increase motivated mostly by the increase in web surfing
over mobile devices. Sites such as Yahoo!, Google, MSN, YouTube,
Facebook and others use HTTP compression to enhance the speed
of their content download. In Section 7.2 we provide statistics on
the percentage of top sites using HTTP Compression. Among the
top 1000 most popular sites 66% use HTTP compression (see
Fig. 5). The standard compression method used by HTTP 1.1 is
GZIP.

This sharp increase in HTTP compression presents new chal-
lenges to networking devices, such as intrusion-prevention system
(IPS), content filtering and web-application firewall (WAF), that in-
spect the content for security hazards and balancing decisions.
Those devices reside between the server and the client and
perform Deep Packet Inspection (DPI). Upon receiving compressed
traffic the networking device needs first to decompress the
message in order to inspect its payload. We note that GZIP replaces
repeated strings with back-references, denoted as pointers, to their
prior occurrence within the last 32 KB of the text. Therefore, the
decompression process requires a 32 KB buffer of the recent
decompressed data to keep all possible bytes that might be back-
referenced by the pointers, what causes a major space penalty.
Considering today’s mid-range firewalls which are built to support
100K to 200 K concurrent connections, keeping a buffer for the
32 KB window for each connection occupies few gigabytes of main
memory. Decompression causes also a time penalty but the time
aspect was successfully reduced in [1].

* Corresponding author. Tel.: +972 523903608.
E-mail addresses: afek@post.tau.ac.il (Y. Afek), bremler@idc.ac.il (A. Bremler-
Barr), yaronkor@post.tau.ac.il (Y. Koral).
1 Supported by European Research Council (ERC) Starting Grant no. 259085.

0140-3664/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2012.01.017

This high memory requirement leaves the vendors and network
operators with three bad options: either ignore compressed traffic,
or forbid compression, or divert the compressed traffic for offline
processing. Obviously neither is acceptable as they present a secu-
rity hole or serious performance degradation.

The basic structure of our approach is to keep the 32 KB buffer
of all connections compressed, except for the data of the connec-
tion whose packet(s) is now being processed. Upon packet arrival,
unpack its connection buffer and process it. One may naively sug-
gest to just keep the appropriate amount of original compressed
data as it was received. However this approach fails since the buf-
fer would contain recursive pointers to data more than 32 KB back-
wards. Our technique, called “Swap Out-of-boundary Pointers”
(SOP), packs the buffer’s connection by combining recent informa-
tion from both compressed and uncompressed 32 KB buffer to cre-
ate the new compressed buffer that contains pointers that refer
only to locations within itself. We show that by employing our
technique for DPI on real life data we reduce the space requirement
by a factor of 5 with a time penalty of 26%. Notice that while our
method modifies the compressed data locally, it is transparent to
both the client and the server.

We further design an algorithm that combines our SOP tech-
nique that reduces space with the ACCH algorithm which was pre-
sented in [1] (method that accelerates the pattern matching on
compressed HTTP traffic). The combined algorithm achieves an
improvement of 42% on the time and 79% on the space require-
ments. The time-space tradeoff presented by our technique pro-
vides the first solution that enables DPI on compressed traffic in
wire speed for network devices such as IPS and WAF.

The paper is organized as follows: a background on compressed
web traffic and DPI is presented in Section 2. An overview on the
related work appears in Section 3. An overview on the challenges
in performing DPI on compressed traffic appears in Section 4. In


http://dx.doi.org/10.1016/j.comcom.2012.01.017
mailto:afek@post.tau.ac.il
mailto:bremler@idc.ac.il
mailto:yaronkor@post.tau.ac.il
http://dx.doi.org/10.1016/j.comcom.2012.01.017
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

Y. Afek et al./ Computer Communications 35 (2012) 810-819 811

Section 5 we describe our SOP algorithm and in Section 6 we pres-
ent the combined algorithm for the entire DPI process. Section 7
describes the experimental results for the above algorithms and
concluding remarks appear in Section 8.

Preliminary abstract of this paper was published in the proceed-
ings of IFIP Networking 2011 [2].

2. Background

In this section we provide background on compressed HTTP and
DPI and its time and space requirements. This helps us in explain-
ing the considerations behind the design of our algorithm and is
supported by our experimental results described in Section 7.

Compressed HTTP: HTTP 1.1 [3] supports the usage of content-
codings to allow a document to be compressed. The RFC suggests
three content-codings: GZIP, COMPRESS and DEFLATE. In fact, GZIP
uses DEFLATE as its underlying compression protocol. For the pur-
pose of this paper they are considered the same. Currently GZIP
and DEFLATE are the common codings supported by current
browsers and web servers.?

The GZIP algorithm uses a combination of the following com-
pression techniques: first the text is compressed with the LZ77
algorithm and then the output is compressed with the Huffman
coding. Let us elaborate on the two algorithms:

LZ77 Compression [4] - The purpose of LZ77 is to reduce the
string presentation size, by spotting repeated strings within the last
32 KB of the uncompressed data. The algorithm replaces a repeated
string by a backward-pointer consisting of a (distance, length) pair,
where distance is a number in [1,32768] (32 K) indicating the dis-
tance in bytes of the string and length is a number in [3,258] indi-
cating the length of the repeated string. For example, the text:
‘abcdeabc’ can be compressed to: ‘abcde (5,3)’; namely, “go back
5 bytes and copy 3 bytes from that point”. LZ77 refers to the above
pair as “pointer” and to uncompressed bytes as “literals”.

Huffman coding [5] - Recall that the second stage of GZIP is the
Huffman coding, that receives the LZ77 symbols as input. The pur-
pose of Huffman coding is to reduce the symbol coding size by
encoding frequent symbols with fewer bits. The Huffman coding
method builds a dictionary that assigns to symbols from a given
alphabet a variable-size codeword (coded symbol). The codewords
are coded such that no codeword is a prefix of another so the end of
each codeword can be easily determined. Dictionaries are con-
structed to facilitate the translation of binary codewords to bytes.

In the case of GZIP, Huffman encodes both literals and pointers.
The distance and length parameters are treated as numbers, where
each of those numbers is coded with a separate codeword. The
Huffman dictionary which states the encoding of each symbol, is
usually added to the beginning of the compressed file (otherwise
a predefined dictionary is selected).

The Huffman decoding process is relatively fast. A common
implementation (cf. zlib [6]) extracts the dictionary, with average
size of 200 B, into a temporary lookup-table that resides in the
cache. Frequent symbols require only one lookup-table reference,
while less frequent symbols require two lookup-table references.

Deep packet inspection (DPI): DPI is the process of identifying
signatures (patterns or regular expressions) in the packet payload.
Today, the performance of security tools is dominated by the speed
of the underlying DPI algorithms [7]. The two most common algo-
rithms to perform string matching are the Aho-Corasick (AC) [8]
and Boyer-Moore (BM) [9] algorithms. The BM algorithm does not
have deterministic time complexity and is prone to denial-of-ser-
vice attacks using tailored input as discussed in [10]. Therefore the

2 Analyzing captured packets from last versions of both Internet Explorer, FireFox
and Chrome browsers shows that accept only the GZIP and DEFLATE codings.

AC algorithm is the standard. The implementations need to deal
with thousands of signatures. For example, ClamAV [11] virus-sig-
nature database contains 27,000 patterns, and the popular Snort
IDS [12] has 6600 patterns; note that typically the number of pat-
terns considered by IDS systems grows quite rapidly over time.

In Section 6 we provide an algorithm that combines our SOP
technique with a Aho-Corasick based DPI algorithm. The Aho-Cora-
sick algorithm relies on an underlying deterministic finite automa-
ton (DFA) to support all required patterns. A DFA is represented by a
“five-tuple” consisting of a finite set of states, a finite set of input
symbols, a transition function that takes as arguments a state and
an input symbol and returns a state, a start state and a set of accept-
ing states. In the context of DPI, the sequence of symbols in the in-
put results in a corresponding traversal of the DFA. A transition to
an accepting state means that one or more patterns were matched.

In the implementation of the traditional algorithm the DFA re-
quires dozens of megabytes and may even reach gigabytes of
memory. The size of the signatures databases dictates not only
the memory requirement but also the speed, since it dictates the
usage of a slower memory, which is an order-of-magnitude larger
DRAM, instead of using a faster one, which is SRAM based. We use
that fact later when we compare DPI performance to that of GZIP
decompression. That leads to an active research on reducing the
memory requirement by compressing the corresponding DFA
[10,13-17]; however, all proposed techniques suggest pure-hard-
ware solutions, which usually incur prohibitive deployment and
development cost.

3. Related work

There is an extensive research on preforming pattern matching
on compressed files as in [18-21], but very limited is on com-
pressed traffic. Requirements posed in dealing with compressed
traffic are: (1) on-line scanning (1-pass), (2) handling thousands
of connections concurrently and (3) working with LZ77 compres-
sion algorithm (as oppose to most papers which deal with LZW/
LZ78 compressions). To the best of our knowledge, [22,23] are
the only papers that deal with pattern matching over LZ77. How-
ever, in those papers the algorithms are for single pattern and re-
quire two passes over the compressed text (file), which is not an
option in network domains that require ‘on-the-fly’ processing.

Klein and Shapira [24] suggest a modification to the LZ77 com-
pression algorithm, to change the backward pointer into forward
pointers. That modification makes the pattern matching easier in
files and may save some of the required space by the 32 KB buffer
for each connection. However, the suggestion is not implemented
in today’s HTTP.

The first paper to analyze the obstacles of dealing with com-
pressed traffic is [1], but it only accelerated the pattern matching
task on compressed traffic and did not handle the space problem,
and it still requires the decompression. We show in Section 6 that
our paper can be combined with the techniques of [1] to achieve a
fast pattern matching algorithm for compressed traffic, with mod-
erate space requirement. In [25] an algorithm that applies the Wu-
Manber [26] multi-patterns matching algorithm on compressed
web-traffic is presented. Although here we combine SOP with an
algorithm based on Aho-Corasick, only minor modifications are re-
quired to combine SOP with the algorithm of [25].

There are techniques developed for “in-place decompression”,
the main one is LZO [27]. While LZO claims to support decompres-
sion without memory overhead it works with files and assumes
that the uncompressed data is available. We assume decompres-
sion of thousands of concurrent connections on-the-fly, thus what
is for free in LZO is considered overhead in our case. Furthermore,
while GZIP is considered the standard for web traffic compression,
LZO is not supported by any web server or web browser.



Download English Version:

https://daneshyari.com/en/article/446206

Download Persian Version:

https://daneshyari.com/article/446206

Daneshyari.com


https://daneshyari.com/en/article/446206
https://daneshyari.com/article/446206
https://daneshyari.com/

