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A B S T R A C T

When running a groundwater flow model, a recurrent and seemingly subsidiary question

arises at the starting step of computations: what value of acceleration parameter do we

need to optimize the numerical solver? A method is proposed to provide a practical

estimate of the optimal acceleration parameter via a geostatistical analysis of the spatial

variability of the logarithm of the transmissivity field Y. The background of the approach is

illustrated on the successive over-relaxation method (SOR) used, either as a stand-alone

solver, or as a symmetric preconditioner (SSOR) to the gradient conjugate method, or as a

smoother in multigrid methods. It shows that this optimum acceleration factor is a

function of the standard deviation and the correlation length of Y. This provides an easy-

to-use heuristic procedure to estimate the acceleration factors, which could even be

incorporated in the software package. A case study illustrates the steps needed to perform

this estimation.

� 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Lors de l’exécution des modèles de nappes, l’utilisateur est invité à faire le choix d’un

solveur numérique dont le fonctionnement optimal requiert, lui-même, le choix d’un

préconditionneur. Une méthode est proposée pour que ce choix soit réalisé à partir d’une

analyse géostatistique de la variabilité spatiale du champ des transmissivités du système

aquifère. Le principe de la méthode est illustré sur la méthode itérative de la surrelaxation

(SOR) et de sa variante la méthode SSOR utilisées, soit comme méthodes de résolution, soit

comme auxiliaires de la méthode du gradient préconditionné ou de celle des méthodes

multigrilles. Les simulations réalisées mettent en évidence une variation du coefficient de

surrelaxation optimal vopt avec les paramètres caractéristiques de l’hétérogénéité du

logarithme des transmissivités. Un catalogue de courbes caractéristiques de vopt est

proposé pour que ce choix soit réalisé moyennant la donnée de l’écart-type et de la

longueur de corrélation du logarithme des transmissivités. Une illustration en est donnée

sur un exemple.
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1. Introduction

The development of computer science has greatly
enhanced the use of numerical methods to provide
solutions of the flow equation of natural groundwater
systems. Recent trends on groundwater models dealing
with heterogeneity (Marsily et al., 2005) underline this
fact. Unfortunately, increasing grid resolution increases
the size of the corresponding matrix equations.

To face this problem, earlier flow solvers used the
method of successive over-relaxation to accelerate the
convergence of Southwell’s original relaxation matrix
(1946). Nevertheless, a quick analysis shows that a
meaningful representation of the variability of the
logarithmic transmissivity implies a computational re-
quirement which involves a number of finite difference
blocks N on the order 104 for a two-dimensional flow and
of 106 for a three-dimensional one (Ababou et al., 1985).

That is to say that, respectively 106 and 109 iterations
are needed to reach this numerical accuracy with SOR
whose convergence grows as N3/2, whereas the conver-
gence of multigrid methods grows as N log N and involves
4 � 104 and 6 � 106 iterations.

Consequently, standard numerical methods are un-
practical in terms of time and storage to tract such matrix
sizes, which is why most groundwater modelling software
is now using preconditioned conjugate gradient methods
(Hill, 1990) and multigrid methods (Mehl and Hill, 2001;
Stüben and Klees, 2005) which can give a new use to SOR as
a preconditioner.

However, it is a matter to regret that these new solvers
are less users-friendly despite the increasing conviviality
of the current software packages and the potentialities of
the new graphical user interfaces. Currently, the context-
sensitive help given in these packages to users unfamiliar
with groundwater modelling refers still to textbooks such
as Chiang et al. (1998).

An easy-to-use governing criterion for the selection of a
preconditioner to the flow solvers remains a sensitive
question for the users.

This article attempts at giving a preliminary response to
some of these perceived weaknesses. A qualitative
geological concept is linked to a mathematical one in
order to provide an understanding of the numerical solver
in a manner that will enable users of groundwater models
to make these choices based on their original background,
i.e. geology.

We will use SOR to support the illustration of this task
for four reasons:

� its simplicity allows us to give a straightforward idea on
the relationship between statistical hydrogeological
parameters and convergence issues;
� SOR is still an efficient iterative stand-alone solver for

small-size problems, as was very well shown by Ehrlich
(1981);
� SOR is an effective preconditioner for Preconditioned

Gradient (PCG) methods handling symmetric successive
over-relaxation (SSOR);
� contrary to existing belief, SOR may be a suitable

smoother (Popa, 2008) in the strategy of multigrid

dealing with moderate anisotropy (Yavneh, 1996) or for
solving 2-D Poisson equations (Zhang, 1996).

Investigating the efficiency of SOR as a stand-alone
solver, as a preconditioner and as a smoother for heteroge-
neous fields is the subject of this article. The smoothing
property is only formally examined herein. It will be
experimented in further work. In the following, Monte Carlo
simulations are performed to compute the spectral radii of
flow matrices arising in groundwater flow modelling
through multiple replications of a non-homogeneous
aquifer. These are considered as different equiprobable
realizations of a random function. Inspection of the optimal
relaxation factor of the SOR method is pursued following an
analytical determination in the homogeneous case and
through the Young formula in the heterogeneous case. Then,
variations of the optimum relaxation factor are expressed as
a function of the standard deviation of the logarithm of the
transmissivity field Y and parameterized on the correlation
lengths of this field.

2. On the flow model

In steady state conditions, the groundwater flow is
described by Poisson’s equation (Bear, 1972):

div T grad hð Þ ¼ q (1)

with appropriate boundary conditions reflecting the
prevailing hydrogeological context.

In Eq. (1) h is the dependant variable, the hydraulic
head, and T is a distributed parameter called transmissivi-
ty, whereas q is a source term. The equivalent finite
difference form of Eq. (1), derived with the centred
difference scheme, can be compacted, and expressed in
matrix notation (Golub and Van Loan, 1996) as:

Bh ¼ q (2)

where B is a square matrix called the flow matrix, h a
column matrix of unknown heads hij, and q a column
matrix involving source terms and boundary conditions.

A quick inspection of B shows that it is a real irreducibly
diagonally dominant symmetric matrix with negative
diagonal entries and non-negative off-diagonal entries.

3. Preliminary numerical considerations

3.1. On the numerical solver

When a numerical solver of Eq. (1) is selected, it needs
to be efficient for solving the set of linear algebraic Eq. (2).
Although SOR performs well for small-size problems, it
cannot efficiently solve large ones. However, it is useful to
evaluate its efficiency either as a convergence accelerator
in PCG or as an error smoother in multigrid algorithms.

3.2. Optimized relaxation

SOR may be defined from the regular splitting of the
flow matrix B:

B ¼ D � E þ Et� �
(3)
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