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1. Introduction

Geostatistical simulation is widely used in the evalua-
tion of mineral resources and ore reserves to map
geological heterogeneity at different spatial scales and to
assess the uncertainty in the unknown values of coregio-
nalized variables, such as the grades of elements of
interest, petrophysical properties of the subsoil, or
geometallurgical properties (work index, acid consump-
tion, metal recoveries) (Boisvert et al., 2013; Rossi and
Deutsch, 2014). Its practical implementation requires
specifying a stochastic model, which describes the spatial

distribution of the coregionalized variables (what should
be simulated), and an algorithm, which aims at construct-
ing realizations of the prescribed model (how it should be
simulated) (Chilès and Delfiner, 2012; Lantuéjoul, 2002).

When the coregionalized variables can be modeled (up
to some nonlinear transformation) by Gaussian random
fields, a few exact algorithms, such as the matrix
decomposition (Davis, 1987, Myers, 1989), discrete spec-
tral (Chilès and Delfiner, 1997; Dietrich and Newsam,
1993; Le Ravalec et al., 2000 Pardo-Igúzquiza and Chica-
Olmo, 1993) and moving average (Black and Freyberg,
1990) algorithms, perfectly reproduce their joint distribu-
tion and spatial correlation structure, but such algorithms
are limited, either because they cannot be used for large-
scale problems or because they require the data and target
locations to be regularly spaced.
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A B S T R A C T

Stochastic simulation is increasingly used to map the spatial variability in the grades of

elements of interest and to assess the uncertainty in the mineral resources and ore

reserves. The practical implementation requires specifying a stochastic model, which

describes the spatial distribution of the grades, and an algorithm to construct realizations

of these grades, viewed as different possible outcomes or scenarios. In the case of the

Gaussian random field model, a variety of algorithms have been proposed in the past

decades, but their ability to reproduce the model statistics is often unequal. In this paper,

we compare two such algorithms, namely the turning bands and the sequential

algorithms. The comparison is hold through a synthetic case study and a real case study in

a porphyry copper deposit located in southeastern Iran, in which it is of interest to jointly

simulate the copper, molybdenum, silver, lead and zinc grades. Statistical testing and

graphical validations are realized to check whether or not the realizations reproduce the

features of the true grades, in particular their direct and cross variograms. Sequential

simulation based on collocated cokriging turns out to poorly reproduce the cross

variograms, while turning bands proves to be accurate in all the analyzed cases.
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To overcome these limitations, approximate algorithms
can be applied, allowing dealing with large numbers of
data on unstructured grids. In this category, one finds the
sequential Gaussian (Deutsch and Journel, 1998), continu-
ous spectral (Shinozuka and Jan, 1972) and turning bands
(Matheron, 1973) algorithms. Sequential Gaussian simu-
lation has been widely use in practice due to its simplicity
and straightforwardness in a variety of areas (Alabert and
Massonnat, 1990; Ravenscroft, 1994), but the accuracy of
this method is not always ensured (Emery, 2004; Emery
and Peláez, 2011; Gómez-Hernández and Cassiraga, 1994;
Omre et al., 1993; Tran, 1994) and its applicability to
multivariate cases may be challenging and require
simplifications (Almeida and Journel, 1994; Gómez-
Hernández and Journel, 1993). An alternative to obtain
good-quality realizations is the turning bands approach
proposed by Matheron (1973). In a nutshell, this method
performs simulation in a multi-dimensional space through
a series of one-dimensional simulations. The algorithm
allows fast calculations and, in theory, yields an accurate
reproduction of the spatial correlation structure (in
univariate and multivariate cases), although the resulting
distributions may slightly differ from the target ones due
to the use of a finite number of one-dimensional
simulations (stripping effect) (Emery and Lantuéjoul,
2006).

The purpose of this paper is to assess the performance
and check the accuracy of sequential Gaussian and turning
bands simulation, through actual and synthetic case
studies.

2. Theory of joint simulation

It is often of interest to construct numerical models that
reproduce the joint distribution of several coregionalized
variables at unsampled locations, conditionally to the
information available at sampling locations (conditional
cosimulation). Because the variables are usually spatially
cross-correlated, it is not sufficient to simulate each
variable separately. Instead, a multivariate approach has
to be used.

In the case of representing the coregionalized variables
of interest by Gaussian random fields, the problem of
cosimulation consists in constructing realizations of a
vector Gaussian random field, say Y = {Y(x): x 2 D}, where
D is the domain of interest and x represents a generic
location in D. For the sake of simplicity, further assume
that the random field has zero mean and that its spatial
correlation structure can be represented by a linear
coregionalization model (Journel and Huijbregts, 1978;
Wackernagel, 2003):

CðhÞ ¼
XS

s¼1

Bs rsðhÞ (1)

where {rs: s = 1,. . ., S} is a set of auto-correlation functions
(basic nested structures)

{Bs: s = 1,. . ., S} is a set of real-valued, positive semi-
definite matrices (coregionalization matrices)

C(h) is a matrix containing the direct (diagonal terms)
and cross (off-diagonal) covariance functions of the

components of Y for a given separation vector h:
C(h) = E{Y(x) � Y(x + h)T}.

2.1. Sequential Gaussian cosimulation

Consider that D is composed of n locations: D = {x1,. . .,
xn}. The sequential algorithm aims at simulating the vector
random field Y at each location successively. Specifically, at
location xi (with i = 1,. . ., n), the simulated vector is
obtained as follows:

YðxiÞ ¼ YSCKðxiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSCKðxiÞ

q
Ui; (2)

where

� YSCK(xi) is the simple cokriging prediction of Y(xi),
obtained by using the pre-existing data as well as
Y(x1),. . ., Y(xi–1) as conditioning data
� SSCK(xi) is the variance-covariance matrix of the

associated cokriging errors
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSCKðxiÞ
q

is the principal square root of SSCK(xi)

(alternatively, the Cholesky factor of SSCK(xi) could be

used instead of the principal square root)
� Ui is a standard Gaussian vector with independent

components, independent of U1,. . ., Ui–1.

The sequential approach is applicable to simulate any
vector Gaussian random field, even when its correlation
structure is not a linear coregionalization model Eq. (1)
(Marcotte, 2012), and, at least in theory, is perfectly
accurate. However, in practice, some simplifications are
required because the cokriging is computationally prohib-
itive when the number of data is too large. This happens
when either the number of pre-existing data or the number
of locations targeted for simulation (n) is large. In this
context, the following approximations are often used.

2.1.1. Full cokriging in a moving neighborhood

Instead of cokriging with all the previously simulated
vectors Y(x1),. . ., Y(xi–1) and all the pre-existing condition-
ing data, one can restrict to the vectors and data that are
located in a neighborhood of the target point xi. The design
of such a neighborhood often considers a maximal search
radius around the target point, as well as the definition of a
maximum number of data and previously simulated
vectors to search for (Deutsch and Journel, 1998;
Goovaerts, 1997; Pebesma, 2004). The use of a local
neighborhood is often combined with a multiple-grid
strategy, which consists in visiting the target grid nodes
according to a set of nested grids (starting from a coarse
grid and following with finer ones), in order to better
reproduce the spatial correlation at different scales (Tran,
1994).

2.1.2. Collocated cokriging in a moving neighborhood

Here, simulation is performed in a hierarchical manner:
the first component of Y is simulated first, using univariate
kriging in a moving neighborhood to determine the
successive simulated values. The second component of Y
is then simulated using cokriging, conditionally to the
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