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a  b  s  t  r  a  c  t

Cognitive  radio  networks  (CRNs)  have  been  recognized  as  a promising  solution  to improve  the  radio
spectrum  utilization.  This  article  investigates  a novel  issue  of joint  frequency  and  power  allocation  in
decentralized  CRNs  with  dynamic  or time-varying  spectrum  resources.  We  firstly  model  the  interactions
between  decentralized  cognitive  radio  links  as  a stochastic  game  and  then  proposed  a strategy  learning
algorithm  which  effectively  integrates  multi-agent  frequency  strategy  learning  and  power  pricing.  The
convergence  of the proposed  algorithm  to  Nash  equilibrium  is proofed  theoretically.  Simulation  results
demonstrate  that  the  throughput  performance  of  the  proposed  algorithm  is  very  close to  that  of the  cen-
tralized  optimal  learning  algorithm,  while  the proposed  algorithm  could  be  implemented  distributively
and  reduce  information  exchanges  significantly.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

1.1. Background and open issues

Cognitive radio networks (CRNs) have been recognized as a
promising solution to improve the radio spectrum utilization [1].
Decentralized CRNs, in which no centralized entity exists, recently
have been of great interest due to high feasibility, scalability,
infrastructure-independence, etc. [2–5].

To enable decentralized CRNs, one of the main challenges is
how to effectively utilize the spectrum resource and control the
transmission power of distributively deployed CRUs. The difficulty
mainly results from the following two facts: on one hand, in a
decentralized CRN, the resource allocation of each CRU is coupled
with each other, i.e., the selection of frequency band and transmit
power of one CRU affects the selection of other CRUs. On the other
hand, in a CRN without any centralized coordinator, it is intractable
for each CRU to obtain enough information about the environment
state and the strategy selection of other CRUs.

1.2. Related work and motivation

To tackle the above open issues, game theory is a powerful theo-
retical tool that is good at studying interactions among self-decision
individuals [6]. Therefore, the research of game theory-based
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wireless resource allocation has attracted worldwide research
interests (see, e.g. [7–9]). It is noted that most existing studies
focus on the non-CRN or static wireless environment and thus the
resource allocations in those cases are usually modeled as static
games, while in dynamic CRNs, the spectrum resources (i.e., the of
PU spectrum occupation) may  change randomly over time, space
and frequency [10,11].

Stochastic game (SG) [12,13] is a promising tool to study
the interactions among self-decision individuals in a dynamic
environment. Recently, there are some studies applying SG to wire-
less networks modeling and analysis (WNMA) [14–17]. Specially,
in [14], a SG-based wireless resource allocation framework is firstly
proposed, where the best-response learning algorithm is designed
for the users to predict the impact of current actions on future
performance. In [15], the transmission rate adaptation problem of
each CRU is formulated as a general-sum Markovian dynamic game
with a delay constraint. In [16], a SG framework is proposed for
anti-jamming defense. Very recently, a robust distributed power
control algorithm is proposed in [17] based on repeated stochas-
tic game with learning automaton. Although SG-based WNMA  has
been researched extensively recently, to the best knowledge of the
authors, the issue of tailoring an effective SG model forjoint fre-
quency and power allocation in dynamic decentralized CRNs is still
underdeveloped.

From a theoretical perspective, the existing SG models can be
classified into three groups: fully cooperative, fully competitive and
mixed SGs. Fully cooperative SGs mean that all agents have the
same return such as Team-Q [18]. Fully competitive SGs require
that the sum return of all agents is zero such as Minmax-Q [19].
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Mixed SGs do not impose any requirements on returns such as
Nash-Q [20], CE-Q [21], and Asymmetric Q [22]. We  find there are
three major limitations restricting a direct application of existing
SG models to the problem of joint frequency and power alloca-
tion in dynamic decentralized CRNs: (1) Overstrict requirements:
for example, the unique optimal joint actions is required in Team-
Q and the existence of saddle point is required in Nash-Q or CE-Q;
(2) Too much information exchanges:  all existing SGs have an explicit
or implicit assumption that each agent know the perfect informa-
tion of other agents, which needs global information exchanges in
practice; and (3) Unacceptable implementation complexity:  strate-
gies in existing SGs are discrete. One possible way is adopting
discrete power levels instead of continuous transmission power,
but the size of state-action space will be very huge, which brings
in unacceptable implementation complexity (see Section 4.2 for
details).

In a nutshell, a good algorithm for the problem of interest
in this article should contain the following four merits: (1) Joint
action learning: in multi-agent environment, due to actions of
all agents affecting each other, joint action learning can avoid
conflict effectively and realize the high efficiency allocation; (2)
Small state-action space: as mentioned before, convergence speed is
determined by the size of state-action space; (3) Limited information
exchanges: information exchanges are great burden to distributed
CR network; and 4) Moderate constraints on Q function: too many
constraints on Q function will restrict the practical application.

1.3. Contributions

Motivated by the observations above, in this article we  inves-
tigate the issue of joint frequency allocation and power control
in dynamic decentralized CRNs using stochastic game. The main
contributions are summarized as follows:

• A joint frequency and power allocation stochastic game (JFPA-SG)
theoretical framework is proposed for dynamic decentralized CRNs.
The proposed JFPA-SG framework provides an elegant mathe-
matical model to characterize the evolutionary dynamics of the
environment state of the primary network and to study the cou-
pled strategy learning for the CRN with multiple interactive CRUs.
In addition, this JFPA-SG framework is also able to depict the het-
erogeneous characteristic of the spectrum resource availability
for different CRUs by considering that CRUs located at different
locations may  experience different occupancy behaviors of the
PUs (see Fig. 1(a)).
• A multi-agent frequency learning with power pricing (MAFLPP) algo-

rithm is developed to learn the discrete frequency strategy and
continuous power strategy jointly and reduce the information
exchanges among agents at the same time. With multi-agent fre-
quency learning, distributed agents learn the optimal frequency
strategies in dynamic environment. With power pricing, agents
sharing the same frequency are able to control their transmission
power to improve their overall throughput without any informa-
tion exchanges.
• A practical implementation scheme of application the proposed

MAFLPP algorithm into large scale CRNs is also designed, which
resolves the common computational complex problem of multi-
agent reinforcement learning (MARL) algorithms when they are
implemented in large scale networks.
• In-depth numerical simulations are provided to demonstrate the

effectiveness of the proposed MAFLPP algorithm. It is observed
that the proposed MAFLPP learning algorithm, which is a
fully decentralized algorithm with very limited information
exchanges, significantly outperforms the random allocation algo-
rithm and single agent reinforcement learning algorithm, and

obtains comparable throughput performance with the optimal
centralized learning algorithm.

1.4. Organization and notations

The rest of this article is organized as follows. Section 2 presents
the system model and problem statement. JFPA-SG is proposed in
Section 3. In Section 4, we  develop the MAFLPP algorithm. The con-
vergence of the MAFLPP algorithm is proofed in Section 5. In Section
6, we present the simulation results, followed by conclusions in
Section 7.

To facilitate the readers, some key abbreviations in this arti-
cle are summarized as follows: cognitive radio networks (CRNs),
cognitive radio users (CRUs), cognitive radio links (CRLs), primary
users (PUs), stochastic game (SG), joint frequency and power alloca-
tion stochastic game (JFPA-SG), reinforcement learning (RL), signal
agent reinforcement learning (SARL) and multi-agent frequency
learning with power pricing (MAFLPP).

2. System model and problem statement

We  consider a decentralized dynamic CRN consisting of M pri-
mary users (PUs) and N distributed cognitive radio links (CRLs).
We assume that each PU has a licensed channel and each CRL cor-
responds to a pair of CRU transceivers. An example scenario with
M = 2, N = 3 is depicted in Fig. 1. As shown in Fig. 1(a), the circles
around PUs stand for their interference regions, hence CRL1 is in
the interference range of PU1, CRL3 is in the interference range of
PU2 and CRL2 is in the interference ranges of both PU1 and PU2.
Fig. 1(b) shows the evolutionary dynamics of the occupying states
of PUs. Let si,k = 0, i ∈ {1, 2}, k ∈ {1, 2, . . . , t} denote that channel i
is idle in the kth time slot and si,k = 1 denote channel i is occupied
in that time slot. We  further assume that the occupying state of
each PU on its licensed channel follows a discrete time Markov
process and take the joint occupying state (s1,k, s2,k), k ∈ {1, 2, . . . ,
t} as the environment state of the CRN. We  consider that the occu-
pying states of PUs are independent with each other and the state
transition probability of PU i or channel i is P(si,k, si,k+1), thus the
joint state transition probability of PUs can be given as

P
[
(s1,k, s2,k), (s1,k+1, s2,k+1)

]
= P(s1,k, s1,k+1)P(s2,k, s2,k+1), (1)

where k indicates the time slot.
For a given environment state of the network as illustrated

in Fig. 1, the optimal frequency allocation is straightforward. For
instance, if the state of a time slot is (s1,1, s2,1) = (0, 1), which means
channel 1 is idle and channel 2 is occupied by PU2, the best fre-
quency option of CRL2 and CRL3 is channel 1 regardless of CRL1’s
actions. Accordingly, CRL1 should select channel 2. As CRL2 and
CRL3 select the same channel, effective power control is needed to
mitigate mutual interference. Due to the state dynamic of the chan-
nels, the best frequency allocations for CRLs in different time slots
should be different. Fig. 1(c) provides the best frequency allocations
of the three CRLs in the CRN, which corresponds to the evolutionary
dynamics of the occupying states of PUs shown in Fig. 1(b).

It is noted that apparently we  can easily given the optimal fre-
quency allocation for the CRN as illustrated in Fig. 1 at each time
slot, however, there is an implicit assumption that it needs a cen-
tralized entity such as base station (BS) who knows the perfect
information of the whole network and the exact future state of
primary channels before it making decisions.

Consequently, to design the optimal frequency allocation, not
mention to joint frequency and power allocation, is a very difficult
problem for decentralized dynamic CRNs. To tackle this challenge,
while considering the dynamic and heterogeneous characteristic
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