
Int. J. Electron. Commun. (AEÜ) 69 (2015) 1550–1556

Contents lists available at ScienceDirect

International  Journal  of  Electronics  and
Communications  (AEÜ)

j ourna l h omepage: www.elsev ier .com/ locate /aeue

SHORT  COMMUNICATION

The  limitation  of  permutation  polynomial  interleavers  for  turbo  codes
and  a  scheme  for  dithering  permutation  polynomials

Jonghoon  Ryua, Lucian  Trifinab,∗,  Horia  Baltac

a Samsung Electronics, Inc., Suwon, Republic of Korea
b “Gheorghe Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Department of Telecommunications,
Bd.  Carol I, No. 11 A, 700506 Iasi, Romania
c University Politehnica of Timisoara, Faculty of Electronics and Telecommunications, Department of Telecommunications, V. Parvan 2, 300223 Timisoara,
Romania

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 5 February 2014
Accepted 16 June 2015

Keywords:
Permutation polynomial
Quadratic permutation polynomial
Turbo codes
Interleaver

a  b  s  t  r  a  c  t

In this  letter,  partial  upper  bounds  on minimum  distance  for turbo  codes  with  permutation  polynomial
(PP)  based  interleavers  over  integer  rings  are  derived  using  the fact  that  PPs  are  equivalent  to  a  family
of  linear  permutation  polynomials  (LPPs).  It  is shown  that  upper  bounds  on  minimum  distance  of  turbo
codes  using  higher  order PP  based  interleavers  are  bounded  by a function  of  the  number  of  equivalent  LPPs
for PPs.  Besides,  it is  shown  that  when  the  constant  terms  of LPPs  are  dithered,  the  resulting  dithered  LPP
interleavers  perform  better  than  the quadratic  permutation  polynomial  (QPP)  based  interleavers  used  in
long term  evolution  (LTE)  standard  or than other  good  QPP  or  cubic  permutation  polynomial  (CPP)  based
interleavers  given  in  the  literature.
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1. Introduction

Permutation polynomial (PP) based interleavers over integer
rings have been widely studied [1–3,6–8]. In particular quadratic
permutation polynomial (QPP) based interleavers were empha-
sized due to their simple implementation [3] as well as excellent
performance [1]. In [1], upper bounds on minimum distance of
turbo codes with QPP based interleavers are shown.

Higher order PP based interleavers have also been investigated
for better performance and implementation, in particular for cubic
permutation polynomial (CPP) based interleavers [2,3]. However
little is known for minimum distance of turbo codes with higher
order PP based interleavers. In this letter, the technique shown in
[3] is used to decompose higher order PPs into linear permutation
polynomials (LPPs) and partial upper bounds on the minimum dis-
tance for turbo codes using higher order PP based interleavers are
shown.

It is also shown that when the constant terms of the LPPs which
are equivalent to PPs are dithered, better frame error rate (FER)
performance is obtained.

For a more succinct writing, in the following, PP based inter-
leavers are denoted as PP.

∗ Corresponding author. Tel.: +40 232701679.
E-mail addresses: jonghoon.ryu@samsung.com (J. Ryu), luciant@etti.tuiasi.ro

(L. Trifina), horia.balta@upt.ro (H. Balta).

2. LPP representation of higher order PPs

In this section, previous results on higher order PPs are briefly
reviewed and upper bounds on the minimum distance for turbo
codes using PPs are shown. Firstly, the equivalence of PPs and a
family of LPPs is shown. In the following, a parallel LPP (PLPP) is
defined.

Definition 2.1. [3] Let p(x) be an interleaver such that

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0(x) = P1,0x + P0,0, mod(x, L) = 0

p1(x) = P1,1x + P0,1, mod(x, L) = 1

· · ·
pL−1(x) = P1,L−1x + P0,L−1, mod(x, L) = L − 1,

which can be also represented in the following form,

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0(y) = P1,0 · Ly + P′0,0, x = Ly

p1(y) = P1,1 · Ly + P′0,1, x = Ly + 1

·  · ·
pL−1(y) = P1,L−1 · Ly + P′0,L−1, x = Ly + (L − 1),

with 1 ≤ L < N, where N is the interleaver length, L|N and 0 ≤ y ≤
N
L − 1. Then p(x) is called a PLPP (i.e., p(x) consists of L LPPs).

For each l = 0, 1, · · · , L − 1, pl(y) is a LPP and since a LPP can be
implemented using only additions and comparisons, a PLPP can also
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Table  1
The least numbers of LPPs for equivalent PLPPs (L) of LTE-QPPs of various lengths N
[5].

Lengths range L = 1 L = 2 L = 3 L = 4 L > 4

40–512 1 55 3 1 60
528–1024 21 3 6 2 32
1056–2048 1 1 26 4 32
2112–6144 1 48 15 64

1  77 8 80 22 188

be implemented using the same address generation method for a
LPP [3].

Although not all PPs are equivalent to PLPPs [3], the follow-
ing lemma  shows that all PPs are equivalent to PLPPs when the
interleaver lengths are of the form N = 23 · M,  where M is a positive
integer.

Lemma  2.2. [3] Let f (x) =
∑K

k=1fkxk(mod  N) be a PP. Suppose that
N = 23 · M,  with M a positive integer. Then f(x) is equivalent to a PLPP
and L ≤ 2M.

Lemma 2.2 is obtained by computing the f(x) at each point
x = 2My + l and using the modulo operation and the zero polyno-
mials shown in [4,3] to remove quadratic and higher order terms.
In particular, a sufficient condition for a QPP to have an equivalent
PLPP is given in [3]. By the lemma  2.2, all the LTE-QPPs are equiv-
alent to PLPPs, since their interleaver lengths are multiples of 8. In
practice, L’s are relatively small numbers compared to interleaver
lengths, as shown in Table 1.

For example, let f(x) = 15x  + 32x2(mod256), then f(2y) = 15 · 2y +
32 · (2y)2 = 15 · 2y + 32 · (2y)2 + 256/2 · y + 256/2 · (y)2 = 79 · 2y,
f(2y + 1) = 15 · (2y  + 1) + 32 · (2y  + 1)2 = 15 · (2y  + 1) + 32.

Note that (N/2) · y + (N/2) · y2 is a zero polynomial for all y. Thus,
the equivalent PLPP, with L = 2, of the previous QPP f(x), is:

p(x) =
{

p0(x) = 79x, mod(x, 2) = 0
p1(x) = 15x  + 32,  mod(x, 2) = 1

Let L = 4, then by using a similar method, the equivalent PLPP of
the previous QPP f(x), is:

p(x) =

⎧⎪⎨
⎪⎩

p0(x) = 15x, mod(x, 4) = 0
p1(x) = 15x  + 32,  mod(x, 4) = 1
p2(x) = 15x  + 128, mod(x, 4) = 2
p3(x) = 15x  + 32,  mod(x, 4) = 3

Since L is relatively small compared to the interleaver length
for QPPs in [5], the interleaver/deinterleaver for the PPs can be
efficiently generated as shown in [3]. Note that the number of

coefficients of the L LPPs depends only on L, not on the degree of
PP. Thus a PP of arbitrary degree can be implemented using L LPPs
if it is equivalent to L LPPs.

In the following, upper bounds on minimum distance for turbo
codes with PPs using Lemma 2.2 are shown.

Lemma  2.3. Let the first coefficients of PLPP be equal for all l, i.e.,
P1,0 = P1,1 = . . . = P1,L−1 = P. Let also m and n be positive integers and
L|(m · (2� − 1)),  where � is the degree of the primitive feedback and
monic feedforward polynomials of recursive systematic convolutional
codes, which are component codes of a conventional turbo code. If
there exists a critical interleaver pattern of size 4 as shown in Fig. 1,
the minimum distance of the turbo code with this PLPP interleaver is
upper bounded by (m + n) · 2� + 12.

Proof. Consider the constituent codewords 1 and 2 generated by
the interleaver pattern, both containing two fundamental paths
with input sequences of weight 2 as shown in Fig. 1, where there
are two error patterns with input sequences of weight 2 at points
xi, xi + m · (2� − 1), and xj, xj + m · (2� − 1) respectively. It is easy to
check that the weight of codeword generated by the constituent
code 1 is 2 · (m · 2�−1 + 2). Let us consider the error sequence with
an input sequence of weight 2 xi, xi + m · (2� − 1). Since the distance
between the two points is m · (2� − 1) and L|(m · (2� − 1)), the two
points are on the same ith LPP. Thus, each point is mapped to Pxi + Li
and P(xi + m · (2� − 1)) + Li, respectively. Since the input sequences
for the constituent codes 1 and 2 are mapped by an interleaver,
there is a point in the input for the constituent code 1 that is mapped
to the point Pxi + Li + n · (2� − 1) in the input for the constituent
code 2. Let us call it xj. Then Pxj + Lj = Pxi + Li + n · (2� − 1). Since
the distance between the points xj, xj + m · (2� − 1) is m · (2� − 1)
and L|(m · (2� − 1)), the two  points are in the same jth LPP.
Finally,

P(xj + m · (2� − 1)) + Lj = Pxj + Lj + Pm · (2� − 1)
= Pxi + Li + (Pm + n) · (2� − 1),

which is equal to P(xi + m · (2� − 1)) + Li + n · (2� − 1). Thus, an input
sequence of weight 4 exists for PLPP with L LPPs and the weight of
the corresponding codeword is 2 · (m · 2�−1 + 2) + 2 · (n · 2�−1 + 2) + 4
= (m + n) · 2� + 12. �

It should be mentioned that the upper bound in Lemma  2.3
assumes that the first coefficients of PLPP are all equal. This con-
straint was  also imposed for the computation of L for LTE-QPPs in
Table 1.

In Table 2, upper bounds on the minimum distance for turbo
codes with PPs when � = 3 are shown. The result in Lemma  2.3 is
similar to Tables II and III in [1], however, Lemma 2.3 can also be
applied to higher order PPs.
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Fig. 1. Critical interleaver pattern of size 4 (Fig. 3 in [1]).
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