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a  b  s  t  r  a  c  t

This  study  presents  the  calculation  of  spectral  angle  beyond  two  endmember  vectors  to  the  n-dimensional
solid  spectral  angle  (NSSA).  The  calculation  of  the  NSSA  is used  to  characterize  the  local  spectral  shape
difference  among  a  set  of  endmembers,  leading  to a methodology  for band  selection  based  on  spectral
shape  variations  of more  than  two  spectra.  Equidistributed  sequences  used  in  the  quasi-Monte  Carlo
method  (ESMC)  for numerical  simulations  are  shown  to  expedite  the  calculation  of  the  NSSA.  We  develop
a  band  selection  method  using  the  computation  of  NSSA(ϑn) in  the context  of  a  sliding  window.  By  sliding
the  window  over  all  bands  available  for varying  band  intervals,  the  calculated  solid  spectral  angle  values
can  capture  the  similarity  of  the  endmembers  over  all spectral  regions  available  and  for  spectral  features  of
varying  widths.  By  selecting  a  subset  of  spectral  bands  with  largest  solid  spectral  angles,  a methodology
can  be  developed  to capture the  most  important  spectral  information  for the  separation  or  mapping
of  endmembers.  We  provide  an  example  of the merits  of the NSSA-ESMC  method  for  band  selection  as
applied  to  linear  spectral  unmixing.  Specifically,  we  examine  the endmember  abundance  errors  resulting
from the NSSA  band  selection  method  as  opposed  to using  the  full spectral  dimensionality  available.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Hyperspectral data typically consists of hundreds of contiguous
spectral bands and provides an ability to capture spectral features
unique to varying image endmembers that can be used for mapping
and detection. The spectral angle mapper algorithm (SAM) is one of
the most commonly used mapping tools for analysis of hyperspec-
tral data in the earth sciences. SAM measures the spectral similarity
between two vectors, a reference spectrum and a target spectrum
for a given number of bands (Kruse et al., 1993).

This first contribution of this study is to expand the calculation
of spectral angle beyond two spectra to the n-dimensional solid
spectral angle (NSSA) where n refers to the number of spectra. We
therefore develop the method for calculating the NSSA. The method
differs from the SAM method in that it is able to calculate the solid
angle defined by a set of more than two endmember vectors.

As a second contribution, we then use the calculation of the
NSSA to characterize the local spectral shape difference among a
set of endmembers leading to a methodology for band selection. For
many hyperspectral applications, spectral features are the basis for
distinguishing and identifying materials (e.g. minerals and rocks,
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plant species or functional groups) and thus the use of band subsets
or spectral regions can drive specific mapping goals. Determining
a subset of bands pertinent to distinguish multiple classes or end-
members of interest becomes key to the success of spectral analysis
for a given application. This relates to the collinearity or redundancy
of adjacent bands that is a general preoccupation in hyperspectral
analysis (Van der Meer and Jia, 2012). Reducing data redundancy
while minimizing the impact on mapping accuracy is a challenge.

Band selection involves the selection of a subset of the original
spectral bands using certain criteria. Several studies have focused
on creating selection criteria based on information theory or spec-
tral variance. Examples include using criteria based on information
entropy (Bajcsy and Groves, 2004), information divergence (Ball
et al., 2007), and mutual information (Guo et al., 2006; Kamandar
and Ghassemian, 2011) to evaluate the information content of dif-
ferent bands. Other studies have addressed various issues of the
band selection process. For example, Chang et al. (1999) used spec-
tral variance to sort band importance; Sun et al. (2014) used a
band quality index to address inter-band correlation and issues
of signal-to-noise ratio in band selection; Qian et al. (2009) used
affinity propagation to characterize representative bands; Tan et al.
(2014) tried to integrate spatial and spectral information into the
selection process; and Geng et al. (2014) calculated a volume-
gradient to search for bands with large dissimilarity. Particle swarm
optimization algorithms (e.g. Su et al., 2014; Yang et al., 2012), a
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simulated annealing approach (e.g. Chang et al., 2011), a nature-
inspired framework (e.g. Nakamura et al., 2014), sparse theory (e.g.
Sun et al., 2015; Zare and Gader, 2008), and forward and sequen-
tial search strategies (e.g. Du and Yang, 2008) were also explored
for band selection. Jia et al. (2013) presented a detailed review of
feature mining methods.

Most of these studies treat each band as an independent vari-
able. However, it has long been recognized, certainly in mineral
spectroscopy, that the shape of spectral features (position, width,
asymmetry) from different scene materials should also be consid-
ered as variables. This is illustrated in several recent studies (e.g.
Chang and Liu, 2014; Van der Meer, 2004; Wang and Chang, 2007).
Thus band selection methods, that not only capture the presence of
key absorption features but are also sensitive to the shape of spec-
tral features, can offer advantages for specific domains including
mineral detection. The band add-on (BAO) approach, proposed by
Keshava (2004), is based on a measure of the spectral angle for an
endmember pair. Key to the BAO method is the selection of a band
set that maximizes the spectral angle between two endmembers.
An impediment of this method is that spectral angle can only be
calculated for 2 spectra/endmembers at a time thus a hierarchical
processing architecture has to be defined to obtain a final result.
Furthermore, BAO is a heuristic band selection method that relies
on the selection of an initial band set, thus may  not yield unique
final band selection results and the initial band set impacts the final
outcome.

Ideally a band selection method would be able to select an
optimal band subset that (a) captures the dominant spectral dif-
ferences for all classes/endmembers, (b) is sensitive to spectral
shape differences rather than amplitude difference, the latter being
dramatically affected by non-compositional factors such as illumi-
nation and imaging geometry, and (c) improves the overall accuracy
of mapping or classification results. The proposed NSSA based band
selection method aims to capture the overall spectral shape dif-
ference amongst all endmembers investigated independent of the
overall spectral amplitude. By selecting a subset of spectral bands
with largest NSSA, a methodology can be developed to capture the
most important spectral information for the separation or mapping
of a suite of endmembers.

Following an explanation of the calculation of the NSSA and its
use for band selection we provide an example applied to linear
spectral unmixing. Van der Meer and Jia (2012) recently addressed
the challenges imposed by the collinearity of endmembers in linear
spectral unmixing that can impact the reliability of fractional abun-
dance estimates. We  therefore examine endmember abundance
errors resulting from the NSSA band selection method as opposed
to using the full spectral dimensionality available.

2. Background

2.1. Spectral angle mapper algorithm (SAM)

The SAM is commonly used to measure the spectral similarity
between two vectors, a reference spectrum and a target spectrum
for a given number of bands (Kruse et al., 1993). The angle is com-
puted as:

SAM(x, y) = cos−1 < x, y >

||x||||y|| (1)

where x and y represent the reference and target spectrum. A
smaller angle represents a higher similarity. A benefit of the SAM
algorithm is that it is insensitive to multiplicative gain factors,
which impact the vector length rather then the vector direction.
Thus, spectral variation introduced by changes in illumination due
to topography, or target particle size in the case of mineral sub-
strates, do not influence SAM results. SAM is therefore used to

quantitatively highlight differences in spectral shape (Crosta et al.,
1998; Sohn and Rebello, 2002; Van der Meer et al., 1997) but it can
only calculate an angle between two vectors.

2.2. Mathematical framework for the estimation of the
n-dimensional solid angle

The solid angle between three or more vectors can be described
mathematically. The positive linear combinations of an indepen-
dent vector set X = {x1, x2, x3, · · ·, xn} in n-dimensional Euclidean
space constitute a polygonal cone Cn (Rockafellar, 1970),

Cn = {x : x =
n∑

i=1

�ixi, �i ≥ 0} (2)

where {�i} is a positive weighted coefficient set. The solid angle is
defined as the measure of the intersection of a polygonal cone Cn

and the corresponding unit sphere surface Sn−1 (Hajja and Walker,
2002). Fig. 1 illustrates the solid angle in 2, 3 and n (n is an inte-
ger and larger than 3) dimensions. In this paper, each vector has
a dimension (number of bands) and the letter n refers to the
dimensionality or number of spectral vectors (e.g. endmembers).
As shown in Fig. 1, for 2-dimensional Euclidean space, the solid
angle ϑ2 (in radians) between two vectors is numerically equal to
the intersection of cone C2 and unit circle S1, which is an arc. This
is the angle measured by the SAM algorithm. For three vectors, the
solid angle ϑ3 (Fig. 1) basically corresponds to a section of spheri-
cal surface on unit sphere S2. When n > 3 simple visual descriptors
fail because the intersection is on a hypersphere. However, the
calculation of a solid angle ϑn constituted by n independent vec-
tors in n-dimensional Euclidean space was solved mathematically
(Hajja and Walker, 2002). Thus far, no research has explored the
application of this mathematical tool in analysis of hyperspectral
data.

3. N-dimensional solid spectral angle (NSSA)

To obtain the solid spectral angle for n endmember spectra,
the spectra are represented by an endmember vector matrix E =
{e1, e2, e3, . . .,  en} in which every column endmember vector is
normalized (length equals 1.0). The n-dimensional solid spectral
angle (NSSA) for the n endmembers is defined as:

NSSA(ϑn) = | det(E)|
∫

s

||EV||−nds (3)

where NSSA(ϑn) is the n-dimensional solid spectral angle (in radi-
ans) and || • || is the Euclidean norm. The determinant is necessary
for the normalization, a procedure essential to ensure that the cal-
culation of the NSSA(ϑn) occurs on the related unit sphere Sn−1.
V = [v1, v2, v3, · · ·, vi, · · ·,  vn]T, vi > 0 is the spherical vector of a unit
sphere for n dimensions expressed in polar Cartesian coordinates.
Specifically,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = cos �1, 0 ≤ �1 ≤ �/2

v2 = sin �1 cos �2, 0 ≤ �2 ≤ �/2

v3 = sin �1 sin �2 cos �3, 0 ≤ �3 ≤ �/2

·  · ··  · ·
vn−1 = sin �1 sin �2· · · sin �n−2 cos �n−1, 0 ≤ �n−1 ≤ �/2

vn = sin �1 sin �2· · · sin �n−2 sin �n−1, 0 ≤ �n−1 ≤ �/2

(4)

The differential element ds is the surface area of a n-1 dimensional
sphere Sn−1 and is expressed as:

ds = sinn−2(�1)sinn−3(�2), · · ·,  sin(�n−2)d�1d�2· · ·d�n−1 (5)
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