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a  b  s  t  r  a  c  t

Assessments  of ecosystem  functioning  rely  heavily  on  quantification  of  vegetation  properties.  The  search
is on  for  methods  that  produce  reliable  and  accurate  baseline  information  on plant  functional  traits.  In
this  study,  the inversion  of the  PROSPECT  radiative  transfer  model  was  used  to estimate  two  functional
leaf  traits:  leaf  dry matter  content  (LDMC)  and  specific  leaf area  (SLA).  Inversion  of PROSPECT  usually
aims  at  quantifying  its  direct  input  parameters.  This  is  the  first  time  the  technique  has  been  used  to
indirectly  model  LDMC  and  SLA.  Biophysical  parameters  of  137  leaf  samples  were  measured  in  July 2013
in the  Bavarian  Forest  National  Park, Germany.  Spectra  of  the  leaf  samples  were  measured  using  an
ASD  FieldSpec3  equipped  with  an integrating  sphere.  PROSPECT  was  inverted  using  a  look-up  table  (LUT)
approach.  The  LUTs  were  generated  with  and  without  using  prior  information.  The  effect  of  incorporating
prior  information  on the  retrieval  accuracy  was  studied  before  and  after  stratifying  the  samples  into
broadleaf  and  conifer  categories.  The  estimated  values  were  evaluated  using  R2 and  normalized  root
mean  square  error (nRMSE).

Among  the retrieved  variables  the  lowest  nRMSE  (0.0899)  was  observed  for  LDMC.  For  both  traits
higher  R2 values  (0.83 for LDMC  and  0.89  for SLA)  were  discovered  in  the  pooled  samples.  The use of  prior
information  improved  accuracy  of  the  retrieved  traits.  The  strong  correlation  between  the estimated
traits  and  the NIR/SWIR  region  of the  electromagnetic  spectrum  suggests  that  these  leaf  traits  could  be
assessed  at  canopy  level  by using  remotely  sensed  data.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Components of biodiversity that influence ecosystem dynam-
ics, stability, productivity, nutrient balance and other aspects of
ecosystem functioning are collectively referred as functional diver-
sity (e.g., Tilman et al., 1997; Tilman, 2001). Most ecologists now
agree that a major determinant of ecosystem functioning is func-
tional diversity, rather than number of species per se (Díaz and
Cabido, 2001). By quantifying functional diversity in natural com-
munities, researchers gain additional understanding of the spatial
and temporal distribution of biodiversity, ecosystem services and
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plant community productivity (Cadotte et al., 2009; Lavorel et al.,
2011). It is believed that better conservation and restoration deci-
sions can be made by measuring and understanding functional
diversity (Cadotte et al., 2011). This realization has underpinned
the shift in focus of biodiversity research from species diversity to
functional diversity (Tilman, 2001).

Like species diversity, functional diversity is quantified on the
basis of trait values of organisms (Petchey and Gaston, 2006; Zhang
et al., 2012). A trait is any measurable morphological, physiologi-
cal or phenological feature of an organism (Violle et al., 2007). In
plants, a trait is called a functional trait (e.g., specific leaf area) when
it affects plant fitness indirectly via its impacts on plant growth,
reproduction, and survival (Violle et al., 2007). It is the combina-
tion of plant functional traits that determines how plants respond
to environmental factors, affect other trophic levels, and influence
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ecosystem processes and services (Zhang et al., 2012). For instance,
plants growing in a resource-rich environment will have a rela-
tively high specific leaf area and low dry matter content, whereas
for plants growing in a resource-poor environment the opposite is
true (Wilson et al., 1999). Traits also provide a link between ecosys-
tem functional diversity and species richness (Carlson et al., 2007;
Gregory, 2008). The functional traits are increasingly used to inves-
tigate community structure and ecosystem functioning, as well as
to classify species into functional types (Smith et al., 1997) or for to
validate global vegetation models (Albert et al., 2010).

In general, plant traits can be categorized into four groups
(Cornelissen et al., 2003): whole-plant traits (e.g., growth form and
height), stem and belowground traits (e.g., stem specific density
and specific root length), regenerative traits (e.g., seed mass and
dispersal mode) and leaf functional traits. Two fundamental leaf
functional traits that are of central interest for researchers are Leaf
Dry Matter Content (LDMC) and Specific Leaf Area (SLA) (Wilson
et al., 1999; Asner et al., 2011). The LDMC, sometimes referred to
as tissue density, is the dry mass of a leaf divided by its fresh mass,
commonly expressed in mg/g (Cornelissen et al., 2003). It reflects
plant growth rate and carbon assimilation and is a better predictor
of location on an axis of resource capture, usage and availability
(Wilson et al., 1999). The SLA is defined as the leaf area per unit of
dry leaf mass usually expressed in m2/kg (Cornelissen et al., 2003).
It is referred to as leaf mass per unit area, as specific leaf mass, as
well as leaf specific mass. SLA links plant carbon and water cycles,
and provides information on the spatial variation of photosynthetic
capacity and leaf nitrogen content (Pierce et al., 1994). Accord-
ing to the latter, “SLA is indicative of plant physiological processes
such as light capture, growth rates and life strategies of plants”. A
worldwide foliar dataset indicates that 82% of all variation in pho-
tosynthetic capacity can be explained by SLA and nitrogen (Wright
et al., 2004). SLA is species-specific, but significant plasticity exists
within and between individual plants of the same species (Pierce
et al., 1994; Asner et al., 2011).

Besides their independent role as important ecological indica-
tors, LDMC and SLA could be used to estimate leaf thickness (LT).
The estimation of LT from the two traits has been investigated in
detail by Vile et al. (2005). This implies SLA is a compound trait
which is inversely proportional to the product of LDMC and LT. A
study by Hodgson et al. (2011) found that LDMC × LT accounted for
nearly three quarters of the observed variation in SLA and that very
different combinations of LT and LDMC regularly generate similar
values of SLA. However, there are misconceptions in the definition
of the stated traits. In many publications, leaf mass per area (LMA
or Cm), which is the inverse of SLA, is defined as LDMC.

Several trait data bases have been established worldwide
through field measurements (e.g., Kleyer et al., 2008; Kattge et al.,
2011). However, acquiring information on such traits purely on
the basis of field measurements is labor-intensive and time-
consuming, and thus expensive. Remotely sensed data can play a
critical role in acquiring such data at broad spatial scales. Hyper-
spectral remote sensing has the advantage of providing detailed
and continuous spectral information, which can potentially be used
for measuring these traits. Previous studies have focused on using
hyperspectral data to quantify biochemical and biophysical vari-
ables of vegetation, such as chlorophyll content, nitrogen and leaf
area index (Darvishzadeh et al., 2008a; Vohland and Jarmer, 2008;
Asner and Martin, 2009; Knox et al., 2010; Skidmore et al., 2010;
Asner et al., 2011; Laurent et al., 2011; Ramoelo et al., 2011; Asner
and Martin, 2012; Ramoelo et al., 2012). Hyperspectral remote
sensing has also been used to map  canopy functional and species
diversity (Carlson et al., 2007; Papeş et al., 2010) and to estimate
biodiversity (even simply as the number of species) (Lauver, 1997;
Gould, 2000; Saatchi et al., 2008; Papeş et al., 2010; Féret and Asner,
2011; Ruiliang, 2011; Féret and Asner, 2014). However, directly

mapping individual species from remote sensing becomes difficult
at larger scales and in ecosystems with very high species variabil-
ity. An alternative approach to mapping species is to estimate plant
functional traits, particularly those found in tree crown leaves, and
to use these for assessing and monitoring biodiversity (Carlson
et al., 2007; Gregory, 2008).

The methods applied to retrieve plant traits from remote sens-
ing data can be grouped into statistical and physical (Darvishzadeh
et al., 2008b; le Maire et al., 2008): statistical techniques are used
to find a relation between the plant trait measured in situ and its
spectral reflectance or some transformation of reflectance. Vegeta-
tion indices are widely used in this approach. When hyperspectral
data are utilized, it is possible to select the most informative nar-
row spectrum features from the entire electromagnetic spectrum
domain and use them for simple and fast assessment of vegeta-
tion properties (Broge and Mortensen, 2002). However, statistical
methods are known to be site-specific and lack generalization.
An alternative is to use a deductive or physical model approach
(Radiative Transfer Model (RTM)) inversion, which is based on
physical laws.. Running an RTM enables the creation of a simulated
training database covering a wide range of situations and configu-
rations. Such forward RTM simulations allow for sensitivity studies
of parameters and development of vegetation indices. This makes
RTM inversion approaches more powerful than statistical meth-
ods. However, the retrieval of variables through RTMs inversion
is ill-posed, since different combination of the input parameters
may  produce the same spectral signature. To overcome the effect
of the ill-posed problem, Combal et al. (2003) recommended the
use of prior information. Several studies have reported significant
improvement to the accuracy of parameter retrieval after using
prior information (e.g., Malenovsky et al., 2006; Dasgupta et al.,
2009); others (Feret et al., 2011; Romero et al., 2012) have tried
to exclude unrealistic combinations of input parameters by apply-
ing a linear regression equation derived from correlating the input
parameters.

Leaf RTMs simulate leaf reflectance and transmittance by using
certain input parameters derived from leaves. There are a num-
ber of leaf RTMs and each one requires a different number of
input parameters. One such leaf radiative transfer model is the
LIBERTY (Leaf Incorporating Biochemistry Exhibiting Reflectance
and Transmittance Yields) model (Dawson et al., 1998) for conifer
needles. However, it requires many input parameters which need
to be obtained by intensive fieldwork and laboratory analysis
(Malenovsky et al., 2006; Morsdorf et al., 2009). Another widely
applied leaf radiative transfer model is PROSPECT (Jacquemoud and
Baret, 1990). PROSPECT, which stands for PROpriétés SPECTrales
(French for Spectral Properties). It simulates leaf reflectance and
transmittance and is the most popular leaf optical properties model
of all those published since 1990 (Jacquemoud et al., 2009).

Although much work has been done on estimating plant traits
from remote sensing, the estimation of LDMC and SLA at all scales
(i.e., leaf, canopy and landscape) is rare. To our knowledge, the use
of remote sensing techniques to estimate LDMC has not yet been
tested at any scale. Compared to other biophysical variables, studies
conducted on SLA are also limited and have mainly been conducted
using statistical methods at a canopy scale. Lymburner et al. (2000)
tested several existing vegetation indices in order to estimate SLA
from Landsat TM imagery and found a strong correlation between
average canopy SLA and green, red, NIR and MIR  reflectance of Land-
sat TM data. A strong correlation between leaf mass per area and
reflectance in the 750–2500 nm wavelength range has been also
reported for tropical rainforest leaf samples (Asner and Martin,
2008; Asner et al., 2011). Normalized indices for leaf mass per area
at leaf and canopy scales have been developed only recently, by le
Maire et al. (2008) and Feret et al. (2011). However, these indices
need to be tested on other images, sites and canopies (le Maire
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