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a  b  s  t  r  a  c  t

Soil  moisture  (SM)  plays  a fundamental  role  in  the land–atmosphere  exchange  process.  Spatial  estimation
based  on  multi  in  situ  (network)  data  is  a critical  way  to understand  the  spatial  structure  and  variation  of
land  surface  soil  moisture.  Theoretically,  integrating  densely  sampled  auxiliary  data  spatially  correlated
with  soil  moisture  into  the  procedure  of spatial  estimation  can  improve  its  accuracy.  In this  study,  we
present  a  novel  approach  to  estimate  the  spatial  pattern  of  soil  moisture  by  using  the  BME  method  based
on wireless  sensor  network  data  and  auxiliary  information  from  ASTER  (Terra)  land  surface  tempera-
ture  measurements.  For  comparison,  three  traditional  geostatistic  methods  were  also  applied:  ordinary
kriging  (OK),  which  used  the  wireless  sensor  network  data  only,  regression  kriging  (RK)  and  ordinary
co-kriging  (Co-OK)  which  both  integrated  the  ASTER  land  surface  temperature  as a covariate.  In  Co-OK,
LST  was  linearly  contained  in  the  estimator,  in  RK,  estimator  is  expressed  as  the  sum of  the  regression
estimate  and  the kriged  estimate  of  the  spatially  correlated  residual,  but  in  BME,  the  ASTER  land  surface
temperature  was  first  retrieved  as  soil  moisture  based  on the linear  regression,  then,  the t-distributed
prediction  interval  (PI)  of soil  moisture  was  estimated  and  used  as  soft  data  in  probability  form.  The
results  indicate  that  all three  methods  provide  reasonable  estimations.  Co-OK,  RK  and  BME  can  provide  a
more accurate  spatial  estimation  by integrating  the  auxiliary  information  Compared  to  OK.  RK  and  BME
shows  more  obvious  improvement  compared  to  Co-OK,  and  even  BME  can  perform  slightly  better  than
RK.  The  inherent  issue  of  spatial  estimation  (overestimation  in  the  range  of  low  values  and  underestima-
tion  in the  range  of  high  values)  can  also  be further  improved  in  both  RK  and  BME.  We  can  conclude  that
integrating  auxiliary  data  into  spatial  estimation  can  indeed  improve  the  accuracy,  BME  and  RK  take  bet-
ter  advantage  of  the  auxiliary  information  compared  to Co-OK,  and  BME  outperforms  RK by integrating
the  auxiliary  data  in  a probability  form.

© 2014  Elsevier  B.V.  All  rights  reserved.

Introduction

Soil moisture (SM) plays a fundamental role in the
land–atmosphere exchange process because it controls both
evaporation from bare soil and transpiration from vegetated areas.
Many scientific studies and applications require global, continental
or regional soil moisture data to represent the initial state for the
soil moisture variables, just like forecasts of weather variations,
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models of plant growth and carbon flux and models of land
surface hydrological processes etc. A number of studies have been
conducted to obtain soil moisture estimates from various obser-
vations and models (Vereecken et al., 2008; Wang and Qu, 2009;
Guswa et al., 2002), but more often, the large spatial–temporal
variation results in very uncertain estimation. Obtaining accurate
soil wetness information by remote sensing techniques has great
potential and is the focus of ongoing research, especially after the
operation of the Soil Moisture and Ocean Salinity (SMOS) (Kerr
et al., 2010), Aquarius (Le Vine et al., 2010), and the launch of Soil
Moisture Active Passive (SMAP) in future (Entekhabi et al., 2010).
Monitoring land surface soil moisture by ground-based techniques
can also be valuable, for drought monitoring, precision agriculture,
and especially for the validation of remote sensing soil moisture
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products (Jackson et al., 2009, 2011). With the development of
wireless communication techniques, the wireless sensor network
(WSN) has been increasingly used in eco-hydrological monitoring
(Akyildiz et al., 2002; Ruiz-Garcia et al., 2009). This technology
makes it possible to take simultaneous measurements of regional
soil moisture, unlike conventional ground-based methods (Bogena
et al., 2010).

Soil moisture information from WSN  can be regarded as a multi-
point simultaneous survey. To understand the spatial distribution
and variation of soil moisture or to compare it to remote sensing
products, we need to estimate the soil moisture distribution map
or up-scale to a certain scale. Traditional geostatistics, such as krig-
ing, is a powerful interpolation tool that quantifies and reduces
the uncertainties of estimation and minimizes investigation costs,
and has been used to provide linear unbiased predictions at un-
sampled locations for over four decades (Burgess and Webster,
1980; Cressie, 1990). The estimation accuracy of the kriging method
is usually limited by the density and distribution of sample sites.
Theoretically, if additional covariates which are spatially corre-
lated with soil moisture and more easily or intensively sampled
are integrated into the estimator, the estimation accuracy may  be
improved. Spatial estimation methods (such as co-kriging, regres-
sion kriging, and universal kriging, et al.) that account for covariates
could play an important role here. These methods could conceiv-
ably result in a considerable reduction of costs while achieving a
comparable degree of accuracy by using fewer relatively expensive
variables and more relatively inexpensive covariates (Stein et al.,
1988; Stein and Corsten, 1991; Zhang et al., 1992, 1997; Wu  et al.,
2003), especially in the under-sampled cases (Yates and Warrick,
1987). Universal kriging and regression kriging differ in the com-
putational steps, however, the resulting predictions and prediction
variances are the same. Co-kriging (Co-OK) is mainly developed
for situations in which the auxiliary information is not spatially
exhaustive (Knotters et al., 1995), in cases where the covariates
are available as maps, regression kriging (RK) will generally be pre-
ferred over Co-OK, although Co-OK may  in some circumstances give
superior results (Asli and Marcotte, 1995; Goovaerts, 1999; Rivero
et al., 2007; Moral, 2010; Hernández-Stefanoni et al., 2011). Stud-
ies have also demonstrated that Co-OK is only minimally superior
to ordinary kriging when the auxiliary variables are not highly cor-
related with object variables (Asli and Marcotte, 1995; Triantafilis
et al., 2001; Wu  et al., 2009), and in some cases, the covariates
were of little significance for prediction due to underweighting (the
weights of covariates sum to zero and are often of small magnitude)
(Goovaerts, 1998). Thus, different methods that may  fit certain situ-
ations better. New methods are needed in spatial estimation of soil
moisture which can incorporate auxiliary data of different origin
and reliability in a systematic and rigorous way.

Bayesian maximum entropy (BME) (Christakos, 1990a, 1990b,
1991, 2000), which belongs to the field of modern spatiotem-
poral geostatistics, provides a systematic and rigorous approach
for integrating physical knowledge into spatiotemporal analysis,
including statistical moments of any order, physical laws, scien-
tific theories, empirical relationships, and uncertain observations
(Christakos and Serre, 2000; Christakos et al., 2001). As a signif-
icant generalization of commonly used geostatistical techniques,
it does not make the Gaussian distribution hypothesis, and it can
estimate variables by non-linear prediction (Christakos, 1990a;
Christakos and Li, 1998). In the two decades since its initial pro-
posal, BME  has been successfully used in many research fields. In
the field of environment and public health, the PM10 distribution
in the state of North Carolina was studied by using the Bayesian
maximum entropy (BME) mapping method (Christakos and Serre,
2000). Another study focused on the spatiotemporal distribution of
ozone (Yu et al., 2009; Bogaert et al., 2009). BME  can readily con-
sider uncertain yet valuable information at the estimation points.

Additionally, in the framework of BME, good estimates of child-
hood asthma prevalence at fine spatial resolution were obtained
by nonlinear integration of prevalence data aggregated over large
areas and the data obtained at the fine scale of interest (Lee, 2005;
Lee et al., 2009). In the field of soil science, D’Or et al. (2001) and
D’Or (2003) investigated the use of BME  for estimating soil textural
fractions in space by integrating a small hard data set with a larger
soft data set. The results show that BME  is more accurate than sim-
ple kriging estimates, thus offing a better picture of the soil reality.
Similarly, in Bogaert and D’Or (2002), the thematic maps and the
data from laboratory analysis were incorporated into BME  to obtain
a more accurate estimation map  of soil texture. BME  illustrates the
advantages of using soft information on a sound theoretical basis.
Additionally, as one of the spatiotemporal knowledge synthesis and
mapping methods, BME  has been successfully applied in the data
fusing field for the fusing of observations and model predictions
(Christakos et al., 2004; Nazelle et al., 2010) or multi-sensors data
(Li et al., 2012, 2013a,b). Only a fraction of the possible applica-
tions are listed above, but this list still shows that BME  performs
wonderfully in the field of spatial (or spatiotemporal) estimation,
especially for the fusing of uncertain auxiliary information. BME
has also been shown to be more accurate and physically meaning-
ful than classical geostatistics (e.g., Christakos and Li, 1998; Serre
and Christakos, 1999; Douaik et al., 2004; Pang et al., 2010). In this
study, we  attempt to introduce BME  as a spatial estimator of soil
moisture.

In the ground ecosystem, both land surface soil moisture and
land surface temperature (LST) vary spatially due to soil type, land
cover, and land use, and they vary temporally with the time of day
and the season of the year. Studies show that the LST maximum
during moist conditions occurs later in the day than during dry
conditions, and land surface soil moisture and LST have been found
to be negatively correlated (Lakshmi et al., 2000; Sun and Pinker,
2004), which indicates that valuable information about the spa-
tial distribution of soil moisture can be obtained from the LST. The
purpose of this study is to present a novel approach to estimate
the spatial pattern of soil moisture by using BME  method based on
wireless sensor network data and the auxiliary information from
ASTER (Terra) LST. For comparison, traditional geostatistic meth-
ods were also applied: ordinary kriging (OK), co-kriging (Co-OK)
and regression kriging (RK).

Materials and methods

Study area and soil moisture wireless sensor network

The experimental area involved in this study (Fig. 1) was  located
in the Zhangye artificial oasis in the middle reaches of the Heihe
River Basin (HRB) in northwestern China (38.871◦ N, 100.359◦ E).
As a typical inland river basin characterized by distinct cold and
arid landscapes distributed upstream to downstream, the HRB has
long served as a test bed for integrated watershed studies and
hydrological experiments (Cheng, 2009). Comprehensive experi-
ments such as HEIFE (Hu et al., 1994) and WATER (Li et al., 2009)
have taken place in the HRB, and HiWATER (Li et al., 2013a,b)
is still in progress. The soil moisture wireless sensor network
(WATERNET) shown in Fig. 1 was part of the first thematic experi-
ment of HiWATER, which is referred to as Multi-Scale Observation
Experiment on Evapotranspiration over heterogeneous land sur-
faces 2012 (MUSOEXE-12). The experiment included two nested
matrixes: one large experimental area (composed of oasis and
desert) covering an area of 30 km × 30 km and one kernel exper-
imental area (completely in the oasis) covering 5.5 km × 5.5 km.
WATERNET was located in the kernel experimental area, and
the observations lasted from May  2012 to September 2012. The
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