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a  b  s  t  r  a  c  t

Eagle  Creek,  Morse and  Geist  reservoirs,  drinking  water  supply  sources  for the  Indianapolis,  Indiana,
USA metropolitan  region,  are experiencing  nuisance  cyanobacterial  blooms.  Hyperspectral  remote  sens-
ing  has  been  proven  to  be an  effective  tool  for  phycocyanin  (C-PC)  concentration  retrieval,  a  proxy
pigment  unique  to cyanobacteria  in  freshwater  ecosystems.  An  adaptive  model  based  on  genetic  algo-
rithm  and  partial  least  squares  (GA–PLS),  together  with  three-band  algorithm  (TBA)  and  other  band
ratio  algorithms  were  applied  to hyperspectral  data  acquired  from  in  situ (ASD  spectrometer)  and  air-
borne  (AISA  sensor)  platforms.  The  results  indicated  that  GA–PLS  achieved  high  correlation  between
measured  and  estimated  C-PC  for  GR  (RMSE  =  16.3 �g/L, RMSE%  =  18.2;  range  (R): 2.6–185.1  �g/L),
MR  (RMSE  =  8.7  �g/L, RMSE%  =  15.6;  R: 3.3–371.0  �g/L)  and  ECR  (RMSE  =  19.3  �g/L,  RMSE%  = 26.4;  R:
0.7–245.0  �g/L) for  the  in  situ  datasets.  TBA  also  performed  well  compared  to other  band  ratio  algorithms
due  to its optimal  band  tuning  process  and  the  reduction  of  backscattering  effects  through  the third  band.
GA–PLS  (GR:  RMSE  =  24.1 �g/L, RMSE%  = 25.2,  R:  25.2–185.1  �g/L; MR:  RMSE  =  15.7  �g/L,  RMSE%  = 37.4,
R:  2.0–135.1  �g/L) and  TBA  (GR:  RMSE  =  28.3  �g/L, RMSE%  =  30.1;  MR:  RMSE  = 17.7  �g/L,  RMSE%  =  41.9)
methods  results  in  somewhat  lower  accuracy  using  AISA  imagery  data,  which  is  likely  due  to atmo-
spheric  correction  or radiometric  resolution.  GA–PLS  (TBA)  obtained  an  RMSE  of  24.82  �g/L (35.8  �g/L),
and  RMSE%  of  31.24  (43.5)  between  measured  and  estimated  C-PC  for  aggregated  datasets.  C-PC  maps
were  generated  through  GA–PLS  using  AISA  imagery  data.  The  C-PC  concentration  had  an  average  value
of 67.31  ±  44.23  �g/L  in  MR with  a large  range  of  concentration,  while  the  GR  had  a  higher  average  value
103.17  ± 33.45  �g/L.

©  2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Notorious for their negative impact on water quality, cyanobac-
terial blooms have been increasingly the subject of water
management and scientific studies (Dekker, 1993; Simis et al.,
2005; Paerl and Huisman, 2008). These nuisance and sometimes
harmful phytoplankton (e.g., Anabaena,  Aphanizomenon, Plank-
tothrix and Cylindrospermopsis) blooms can result in both aesthetic
degradation and resource use limitations of lakes and reservoirs
due to the production of surface scums and musty, earthy smell
taste and odor metabolites (Chorus and Bartram, 1999). Blooms
also cause recreational degradation due to ecosystem degrada-
tion and human and animal health risks, including fatal human
liver, neurological and skin diseases, caused by the production of
toxins such as anatoxins, microcystins, and cylindrospermopsin
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(Codd et al., 2005; Huisman et al., 2005). Long-term low level
exposures to microcystin have been suspected to contribute to
high rates of liver cancer (Guo, 2007), and a short-term expo-
sure to anatoxin has likely caused death of wild animals (Behm,
2003).

Cyanobacteria growth is dependent on temperature, light, and
nutrient concentrations and is often associated with eutrophi-
cation (Codd et al., 2005; Paerl and Huisman, 2008), which is
a natural process hastened by anthropogenic activity (Paerl and
Huisman, 2008). As nitrogen and phosphorous levels rise in water
bodies, conditions become more conducive for cyanobacterial
blooms (Codd et al., 2005). Current monitoring practices often
involve widely dispersed station sampling and laboratory analy-
sis. The ephemeral nature of algal blooms makes this traditional
approach ill-suited for monitoring inland waters at large scale
due to the patchy distribution of algae blooms (Dekker et al.,
1991; Simis et al., 2007; Hunter et al., 2010). Remote sensing
offers an alternative to in situ field based monitoring by provid-
ing a synoptic view of target water quality parameters (Gitelson,
1992; Schalles and Yacobi, 2000; Simis et al., 2005; Voutilainen
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et al., 2007; Hunter et al., 2010). It is widely accepted that
remote sensing can be used as a powerful tool for monitoring
chlorophyll-a (Chl-a) spatiotemporal dynamics due to its diagnos-
tic absorption spectral band around 443 and 675 nn (Gitelson,
1992; Gons, 1999; Gons et al., 2008; Igamberdiev et al., 2011).
C-phycocyanin (C-PC), a pigment mainly specific to cyanobacte-
ria and some cryptophytes as a minor pigment, demonstrates a
diagnostic spectral absorption in freshwater systems at 620 nm
(Dekker, 1993; Gitelson et al., 1999; Randolph et al., 2008), which
makes the remote detection of cyanobacteria possible (Dekker,
1993; Schalles and Yacobi, 2000; Simis et al., 2005; Hunter et al.,
2010).

To date, little research has been done to map  C-PC using multi-
and hyper-spectral remote sensing (Mille et al., 1992; Vincent et al.,
2004; Hunter et al., 2010; Guanter et al., 2010). The first example
used multiple linear regressions between different combinations of
TM band ratios and measured concentration to map  spatial distri-
bution of C-PC in Lake Erie (Vincent et al., 2004), but this algorithm
is saturated when C-PC abundance is greater than 14 �g/L. The
second case mapped high concentrations of C-PC in a pond near
southern San Francisco Bay though the use of spectral mixture anal-
ysis (SMA) of AVIRIS data (Richardson, 1996; Kruse et al., 1997).
SMA is a simple additive linear model used to estimate the abun-
dances of the materials measured by the imaging spectrometer.
Although this approach has been widely used in mapping land use
and land cover change as well as geological mapping, it requires
a spectrally “pure” endmember which is completely impossible
with in situ water samples. Schalles and Yacobi (2000) proposed
an algorithm based on the band ratio R648/R624 to determine C-PC
concentration.

Simis et al. (2005) created a semi-empirical model for deter-
mining C-PC abundance using the optical properties of C-PC and
the attenuation and backscattering of other optically active con-
stituents (OACs) present in turbid inland water, particularly specific
absorption (C-PC spectral absorption per unit concentration). This
algorithm was developed using a portable spectroradiometer
(Photoresearch, PR-650) to accommodate other remote sensing
platforms (i.e., MEdium Resolution Imaging Spectrometer, MERIS).
Application of the Simis et al. (2005) algorithm to field spectra
collected on two lakes in the Netherlands yielded an R2 value
of 0.94, with limited samples (n = 34). Investigations have been
made to apply MERIS satellite data to monitor C-PC for inland
waters (Guanter et al., 2010; Matthews et al., 2010). Due to the
weak absorption feature for C-PC, inherent optical properties (IOPs)
determination for C-PC is a challenge to date, which makes bio-
optical determination of C-PC unsuitable.

The spatial transferability of developed models is a challenge for
the remote sensing community (D’Alimonte et al., 2003; Vincent
et al., 2004; Gitelson et al., 2008). Since the three-band algo-
rithm (TBA) has been tested more universally and has been shown
to be stable for Chl-a concentration (Gitelson et al., 2008; Sun
et al., 2009), the spatial transferability of models will be com-
pared with both GA–PLS and TBA. This research will address a
new method for creating empirical algorithms by using genetic
algorithms with partial least squares analyses (GA–PLS). As a com-
parison, three-band model (Dall’Olmo and Gitelson, 2005) will be
explored for its potential applicability to C-PC inversion (Hunter
et al., 2008; Guanter et al., 2010) for inland productive potable
waters. Specifically, the objective of this analysis is threefold: (1)
to determine the optimal band ratios and TAB for C-PC retrieval
with higher accuracy; (2) to assess the GA–PLS model for C-PC
concentration estimation with in situ collected spectral data with
comparison to TAB; and (3) to map  C-PC concentration with air-
borne imaging spectrometer for application (AISA) data for inland
water bodies which are confounded with other optically active con-
stituents.

2. Materials and methods

2.1. Study sites

Eagle Creek Reservoir (ECR: W 86◦18′13.07′′, N 39◦51′09.84′′;
surface area (A) = 5.0 km2; mean water depth (Z) = 4.2 m; vol-
ume  (V) = 21.0 million m3), Morse Reservoir (MR: W 86◦2′17.22′′,
N 40◦6′16.84′′; A = 6.0 km2; Z = 4.7 m; V = 28.0 million m3) and Geist
Reservoir (GR: W 85◦57′47.22′′, N 39◦55′16.84′′; A = 5.9 km2;
Z = 3.2 m;  V = 23.8 million m3) are major components of the drink-
ing water system and used for recreation for over 900,000 residents
of the Indianapolis, Indiana (Fig. 1). The major features of the three
reservoirs are summarized in Table 1. GR has undergone dredging
for the acquisition of sand and gravel since 2001. Drinking water
managers have documented blooms of nuisance and harmful algae
in all three reservoirs (Tedesco et al., 2005). Indiana Department of
Environmental Management (IDEM) has classified the trophic sta-
tus of the three reservoirs from the mesotrophic to eutrophic range
(IDEM, 2006).

2.2. In situ data collection

Field campaigns were carried out in 2005 and 2006. Samples
were taken under a diverse range of algal bloom conditions. In situ
water measurements were collected with YSI 6600 V-2 multi-
parameter probe (YSI Inc., Yellow Springs, OH), including electrical
conductivity (mS), turbidity (NTU), and pH value. The station coor-
dinates were recorded using global positioning system (GPS) and
water clarity was estimated using a Secchi disk (SDD). Surface water
grab samples were collected at each location at approximately 0.25
meters below the water surface. Samples were held on ice until
preprocessed for analyzing C-PC, Chl-a, and total suspended solids
(TSS). Two  field surveys for 2005 and 17 field surveys for 2006 were
conducted (see Tables 2 and 3 for detail).

2.3. Spectroscopic measurements

In situ remote sensing reflectance was collected using an ASD
ultraviolet/visible and near-infrared (UV/VNIR) spectrophotometer
(ASD Inc., Boulder CO). The detail measurement procedures can be
found in Randolph et al. (2008).  Remote sensing reflectance (Rrs;
sr−1) was obtained using the ratio of upwelling water-leaving radi-
ance (Lw; W m−2 sr−1) at a nadir viewing angle to the downwelling
irradiance (Ld; W m−2):

Rrs = Lw(0+, �)
Ed(0+, �)

(1)

where Lw is derived from substracting total upwelling radiance
(Lup) at 900 nm from Lup for each wavelength from 350 to 900 nm;
Ed denotes downwelling irradiance measured at each sample site
using a white reference panel (99% Lambertian reflector).

2.4. Airborne hyperspectral images

2.4.1. Image acquisition
Airborne hyperspectral data were collected using an AISA-

Eagle (Spectral Imaging Ltd. Oulu, Finland) sensor on board a
Piper Saratoga airplane owned by the University of Nebraska, Lin-
coln (UNL) Center for Advanced Land Management Information
Technologies (CALMIT). This airborne sensor has a programmable
set-up, allowing the collection of data in up to 512 discrete channels
through the spectral range of 400–1000 nm.  Detailed information
on image acquisition can be found in Li et al. (2010).  Images with
62 bands in the spectral region of approximately 392–982 nm with
a bandwidth of 7–8 nm was acquired with 1 m spatial resolution.
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