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a  b  s  t  r  a  c  t

The  Internet  traffic  analysis  is important  to network  management,  and  extracting  the  baseline  traffic
patterns  is  especially  helpful  for some  significant  network  applications.  In this  paper,  we  study  on  the
baseline  problem  of  the traffic  matrix  satisfying  a  refined  traffic  matrix  decomposition  model,  since  this
model  extends  the  assumption  of  the  baseline  traffic  component  to characterize  its  smoothness,  and  is
more  realistic  than  the  existing  traffic  matrix  models.  We develop  a novel  baseline  scheme,  named  Stable
Principal  Component  Pursuit  with  Time-Frequency  Constraints  (SPCP-TFC),  which  extends  the  Stable
Principal  Component  Pursuit  (SPCP)  by  applying  new  time-frequency  constraints.  Then  we design  an
efficient  numerical  algorithm  for SPCP-TFC.  At last,  we  evaluate  this  baseline  scheme  through  simulations,
and  show  it  has  superior  performance  than the existing  baseline  schemes  RBL  and  PCA.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The Internet traffic analysis is of critical importance to network
operation and management. Usually, the total traffic is modeled by
the superposition of diverse components corresponding to differ-
ent user behaviors [1–4]. The baseline traffic represents the most
prominent traffic patterns [3], which is quite helpful for many
significant network applications such as capacity planning, load
balancing, and anomaly detection. In the past, most studies devoted
to estimating the trend of the single-link traffic [5], rather than
extracting the common traffic pattern of the whole network, how-
ever, the later is more informative for the manager of a large-scale
network. Recently, as the network-wide traffic measurement is
becoming increasingly popular, efficiently baselining the network-
wide traffic turns into a practical and most urgent problem.

The traffic matrix a kind of network-wide traffic data, and it
represents the traffic exchanged between each Origin-Destination
(OD) pair1 of the network. Compared with other traffic data such
as the link loads, it has a significant advantage [6]: the OD flows
are invariant under the changes of topology and routing. Thus the
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traffic matrix shows the true intensity of the relationships between
the OD pairs, and hence is quite helpful for archiving the optimiza-
tion in capacity planning and traffic engineering, and detecting
the network-wide anomalies more accurately. The traffic matrix
is obtained either by indirect estimation or by direct measurement
[7]. Until very recently, the estimation approach was still an active
research topic. But some things have changed around 2010 [8],
because the netflow-enabled routers [9] are increasingly deployed,
a large percentage of today’s networks are able to measure them-
selves. Hence in many cases, it is feasible to directly measure the
traffic matrix now.

The baseline of a traffic matrix captures the common patterns
among OD flows, and it should be stable against the disturbance
of anomaly traffic. The Principal Component Analysis (PCA) was
used for traffic matrix analysis first in [1], and showed the low-rank
nature of the baseline (i.e. the deterministic) traffic component,
but it performed poorly when the traffic matrix contains large
anomalies [4,10]. Recently, the Robust Principal Component Anal-
ysis (RPCA) theory [11], which focus on recovering the low-rank
matrix contaminated by the sparse matrix whose non-zeros entries
may have large magnitudes, has attracted wide attentions. Can-
des et al. [11] presented the Principal Component Pursuit (PCP)
method, and proofed that it could recover the low-rank matrix
accurately under very board conditions. Interestingly, the empir-
ical characteristics of the traffic matrix are close to the structural
hypotheses of the RPCA theory, since the trends of different OD
flows, which are highly correlated, fit for the low-rank hypothe-
sis, and the network anomalies, which rarely appear in time, fit for
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the sparse hypothesis. Inspired by this fact, Abdelke et al. [12] first
adopted the PCP method for network traffic analysis, while their
work mainly considered the anomaly detection problem. Later,
Bandara and Jayasumana [3] proposed the Robust Base Line (RBL)
scheme, which was also based on PCP and followed the exact “low-
rank and sparsity” assumption, and they argued that RBL performs
better than several existing traffic baseline schemes.

Even so, it still makes sense to work on this topic more inten-
sively. In fact, the exact “low-rank and sparsity” traffic matrix model
in [3,12] is quite simple, and not very realistic. On the one hand,
considering the baseline time-series of each OD flow, as it repre-
sents the long-term and deterministic traffic trends such as the
diurnal pattern, this time-series should be smooth enough. But this
feature cannot be characterized by the low-rank assumption. On
the other hand, the empirical OD flow traffic also contains the short-
term fluctuations behavior with small magnitudes [13]. In this case,
the traffic matrix does not exactly meet the “low-rank and sparsity”
assumption, instead, it has a noise component. In [4], we modeled
the noise traffic, but did not consider the smoothness of the baseline
traffic. Consequently, it is necessary to build a more realistic traffic
matrix model, and consider the related traffic baseline problem. In
addition, the evaluations of traffic baseline schemes were not very
sufficient in the previous studies. A key hurdle is that obtaining the
ground-truth baseline of the real-world traffic matrix is impossible,
as a result, one could neither measure the accuracy of a base-
line scheme, nor compare different baseline schemes trustworthily.
Hence the simulation approach which contains the ground-truth
information is needed in the evaluation process.

In this paper, we study on the baseline problem under a more
realistic traffic matrix model, and propose a novel baseline scheme
to enforce the smoothness of the baseline traffic component. Our
contributions are listed as follows.

• We present a refinement of the traffic matrix decomposition
model in [4], which extends the descriptions of the baseline traffic
to characterize its smoothness.

• We propose a novel traffic matrix baseline scheme named Stable
Principal Component Pursuit with Time-Frequency Constraints
(SPCP-TFC). As an extension of the Stable Principal Component
Pursuit (SPCP) [14], SPCP-TFC takes new time-frequency con-
straints.

• We design the Accelerated Proximal Gradient (APG) algorithm
for SPCP-TFC, which has a fast convergence rate.

• We evaluate our baseline scheme through simulations and show
it has superior performance than RBL and PCA.

2. Methodology

2.1. A Refined Traffic Matrix Decomposition Model

Suppose X ∈ R
T×P is a traffic matrix, and each column Xj ∈ R

T

(1 ≤ j ≤ P) is an OD flow in T time intervals. In [4], we proposed the
simple Traffic Matrix Decomposition Model (TMDM), assuming X is
the sum of a low-rank matrix, a sparse matrix, and a noise matrix.
This model is equivalent to the data model of the generalized RPCA
problem [14], and the low-rank deterministic traffic matrix corre-
sponds to the baseline traffic.2 However, TMDM did not consider
the temporal characteristics of the baseline traffic. Since the base-
line traffic time-series of each OD flow represents the long-term
and steady user behaviors, it tends to display a smooth curve. A
number of mathematical tools, such as the wavelets and the splines
[15], can formulate smoothness. As the most salient baseline traffic

2 In the following discussion, the words “deterministic traffic” and “baseline traf-
fic” are used interchangeably.

patterns are slow oscillation behaviors, in this paper, we  formulate
the baseline traffic time-series as the sum of harmonics with low
frequencies, and thus establish a Refined Traffic Matrix Decompo-
sition Model (R-TMDM):

Definition 1 (R-TMDM) The traffic matrix X ∈ R
T×P is the super-

position of the deterministic (baseline) traffic matrix A, the anomaly
traffic matrix E, and the noise traffic matrix N. A is a low-rank matrix,
and for each column time-series in A, the Fourier spectra whose fre-
quencies exceed a critical value fc are zeros; E is a sparse matrix with
most entries being zeros, but the non-zeros entries may  have large
magnitudes; N is a random noise matrix, and each column time-series
is a zero-mean stationary random process with a relatively small vari-
ance.

As the OD flows in the backbone network are highly aggregated
by superimposing independent traffic processes, it is appropriate
to model the noise traffic by the Gaussian processes following the
central limitation theory [6,16]. For simplicity, we assume each
time-series Nj (1 ≤ j ≤ P) is the white Gaussian noise with variance
�2

j
> 0 in this study.3

2.2. Stable Principal Component Pursuit with Time-Frequency
Constraints

Let ‖ · ‖ ∗, ‖ · ‖ 1, and ‖ · ‖ F denote the nuclear norm, the l1 norm,
and the Frobenius norm, respectively. The Stable Principal Com-
ponent Pursuit (SPCP) method for the generalized RPCA problem
solves this convex program [14]:

minimizeA,E,N‖A‖∗ + �‖E‖1

s.t. A + E + N = X, ‖N‖2
F ≤ ı,

(1)

where � > 0 is a balance parameter, and ı > 0 is a constraint param-
eter. The objective function of (1) combines the nuclear norm and
the l1 norm, which are the convex relaxations of the rank function
and the l0 norm, respectively, to enhance the low-rank structure of
matrix A, as well as the sparsity of matrix E.

In this study, in order to extract the baseline traffic (i.e. matrix A)
more accurately, we extend SPCP by preserving its objective func-
tion and redesigning the constraint functions. Firstly, considering
the R-TMDM model, it is necessary to add a constraint for the base-
line traffic matrix based on its frequency-domain assumption. Let
W = [W0· · ·WT−1]T×T denote the discrete Fourier basis matrix of
length T. For each 0 ≤ k ≤ T − 1, the Fourier basis Wk is defined as

Wk(t) = 1√
T

e−i(2�k/T)(t−1), 1 ≤ t ≤ T, (2)

with frequency fk = min  {(k/T), (T − k/T)}. Suppose WH is made up
of the high-frequency bases Wk in W satisfying fk ≥ fc, and thus
WH(WH)� is the projection operator to the high-frequency sub-
space. Hence we add the following constraint for the baseline
traffic:

WH(WH)�A = 0T×P. (3)

Secondly, unlike the Frobenius norm inequality in (1), we use
a different constraint strategy for the noise traffic matrix N. For
each column vector Nj (1 ≤ j ≤ P), consider its periodogram function

{INj
(k)}T−1

k=0
:

INj
(k) = |W�

k Nj|2 =
∣∣∣∣∣ 1√

T

T∑
t=1

Nj(t)e−i(2�k/T)(t−1)

∣∣∣∣∣
2

, 0 ≤ k ≤ T − 1.

(4)

3 In future work, we plan to consider a more general model, i.e. each noise traffic
time-series is a fractional Gaussian noise, whose temporal characteristics are more
similar to the real-world backbone traffic.
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