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a  b  s  t  r  a  c  t

In  this  paper,  a  novel  approach  based  on  fast  wavelet  collocation  method  (FWCM)  is  presented  to  solve
partial  differential  equations  (PDEs)  in  coupled  on-chip  interconnects  with  parameter  variations.  After
processing  PDEs  by  decomposing  variables  with  wavelet  functions,  we  transfer  the  PDEs  into  ordinary
differential  equations  (ODEs),  and  then  use  Taylor  expansion  in  the  ODEs  to approximate  the  partial  com-
plex  expression  containing  inverse  matrix.  Consequently,  we  can  solve  the  PDEs  with  random  variables
more  feasibly.  Moreover,  this  approach  provides  a new  idea  for  solving  other  kinds  of  PDEs  with ran-
dom  variables  in  very  large  scaled  integrated  circuits (VLSI).  Comparison  with  HSPICE  simulation  results
shows  the  method  proposed  in  this  paper  is  effective  and  accurate.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

As the VLSI fabrication technology stepped into the nanometer
era, the sizes and intervals of interconnect on the chips shrink
rapidly, and the System-on-Chip (SoC) signal frequency keeps
increasing [1]. These trends in VLSI primarily affect parasitic resis-
tance and capacitance of interconnects, further arise significant
increase of crosstalk and the circuit delay, which have become crit-
ical in determining system performance and reliability. Crosstalk
is a common phenomenon that often happens in the digital circuit
design. It’s caused by energy coupling between different intercon-
nects. Mutual inductance and capacitance are the primary sources
inducing crosstalk. There are two bad effects on circuits due to
crosstalk: crosstalk will cause the change of effective characteristic
impedance and propagation velocity, and affect systemic timing
sequence; crosstalk will induce noise to the other interconnect
wires, and reduce the noise tolerance and the signal integrity [2].
Circuit delay consists of electromagnetic wave transmission delay
and rising edge delay. The delay determines the upper limit of
the clock frequency, and it increases with the increasing of wire
length. In the reality, because of the limitation of fabrication pro-
cess, the distributed parameter of the interconnects cannot be
constant, and even small variation of the distributed parameters
will lead to great changes of circuit delay and crosstalk, so the anal-
ysis of the distributed parameter variation based on distributed
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parameter model is indispensable, many scholars and researchers
work in this field in recent year [3–5].

Nowadays, there are various efficient simulation methods for
timing analysis of the problem with random variations in the
integrated circuits, and traditionally people use the computer simu-
lation software like Pspice, that can conduct Monte-Carlo statistical
analysis [6]. The core idea of Monte-Carlo in the electronic circuits
is using a set of pseudo random numbers to obtain random sample
sequences of the electric component parameters under the con-
dition that the statistical distribution of given electric component
parameter tolerances have been known, and then having DC, AC
small signal and transient analysis on these random sample circuits
for many times, followed by estimating the statistical distribution
of the circuit performance. Although Monte-Carlo method is able
to realistically describe the characteristics of random objects and
physical experimental process, its convergence rate is compara-
tively slow to some numerical methods and its error is uncertain.
In order to overcome this weakness, we  choose the four-order
B-spline FWCM [7] to deal with it. FWCM can handle circuit
nonlinearity, control numerical accuracy, and will not cause the
accumulation of numerical error since it works in time domain
[8,9]. The wavelet property of localization in both the time and fre-
quency domains makes a uniform approximation possible which is
generally not found in time-marching methods [10]. Moreover, it
has faster convergence rate than traditional algorithm. Compared
with Monte-Carlo method, FWCM costs much less desired time to
gain the similar precision.

In this paper, what we concern is the output voltage of the cou-
pled interconnects and what we  want to obtain is therelationship
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Fig. 1. Two coupled interconnects.

between the output voltage and the random distributed param-
eter variables. In Section 2, we establish the PDEs according to
the distributed parameter model of the two coupled interconnects,
then we transfer them into the ODEs based on four-order B-spline
FWCM,  finally we obtain the solutions (the output voltages) of
PDEs and further derive their mean and variance. In Section 3,
we compare our method with Monte-Carlo and demonstrate its
effectiveness according to the simulation results. In Section 4, we
conclude our study and comments on the future research.

2. Interconnect modeling and analysis

2.1. The establishment of PDEs in the coupled interconnects with
random parasitic parameters

We  study the two coupled interconnects shown in Fig. 1. The
equivalent circuit diagram is shown in Fig. 2. Both of their lengths
are l, and the variations of their distributed parameters are assumed
to be random and normally distributed. We  first normalize the
length to L, which is also the solution interval. Suppose that R*, L*,
G* and C* are the normalized resistance, inductance, conductance,
and capacitance per unit length respectively.

It is easy to see that R*, L*, G* and C* are composed of two parts:

R∗ = R + �R,  L∗ = L + �L,

G∗ = G + �G,  C∗ = C + �C.
(1)

where

R =
[
R11 R12

R21 R22

]
˝/m, L =

[
L11 L12

L21 L22

]
nH/m,

C =
[
C11 C12

C21 C22

]
pF/m, G = 0;

�R  =
[

0.1 ∗ R11 ∗ X 0

0  0.1 ∗ R22 ∗ X

]
˝/m,

�L  =
[

0.1 ∗ L11 ∗ Y 0.1 ∗ L12 ∗ Z

0.1 ∗ L21 ∗ Z 0.1 ∗ L22 ∗ Y

]
nH/m,

R22 L22

Cg2

R11 L11

Cg1

Lm Cm

Fig. 2. Equivalent circuit diagram of the two coupled interconnects.

�C =
[

0.1 ∗ C11 ∗ W + 0.1 ∗ C12 ∗ Q 0.1 ∗ C12 ∗ Q

0.1 ∗ C21 ∗ Q 0.1 ∗ C22 ∗ W + 0.1 ∗ C21 ∗ Q

]
× pF/m, �G = 0.

without loss of generality, we  assume the maximum variation of
electrical parameters is 10% (0.1) of normal value. R11 is the self-
resistance of line 1, R22 is the self-resistance of line 2, and R12 and
R21 are mutual resistances, R12 = R21 = Rm, and they do not have
important impact on the electrical performance of interconnects,
so here we  let Rm = 0; L11 is the self-inductance of line 1, L22 is the
self-inductance of line 2, L12 is the mutual inductance between line
1 and line 2, L21 is the mutual inductance of between line 2 and
line 1, L12 = L21 = Lm; C12 is the mutual capacitance between line 1
and line 2, C21 is the mutual capacitance between line 2 and line
1, C12 = C21 = Cm, C11 is the sum of the ground capacitance Cg1 of
line 1 and C12, C22 is the sum of the ground capacitance Cg2 of line
2 and C21, i.e., C11 = Cg1 + C12, C22 = Cg2 + C21; and we suppose G is
0, it is true for most of insulation materials; X, Y, Z, W,  Q all obey
standard normal distribution, i.e. X, Y, Z, W,  Q–N(0,1), and X, Y, Z, W,
Q ∈ (−1, 1).

Let z be the axis along the line, and z = 0 and z = L correspond
to its near and far end respectively. Further, let v(z, t) and i(z, t) be
the voltage and current along the line. The PDEs of the line can be
derived from Kirchhoff’s current law (KCL) and Kirchhoff’s voltage
law (KVL), written as follows [11]:

∂v(z, t)
∂z

= −R∗(z)i(z, t) − L∗(z)
∂i(z, t)
∂t

(2)

∂i(z, t)
∂z

= −G∗(z)v(z, t) − C∗(z)
∂v(z, t)
∂t

(3)

With the boundary conditions:

V(0, t) = Vbl(t), V(L, t) = Vbr(t) (4)

For Laplace transforms on the above PDEs, we  can obtain:

dV(z, s)
∂z

= −(R∗(z) + SL∗(z))I(z, s) (5)

dI(z, s)
∂z

= −(G∗(z) + SC∗(z))V(z, s) (6)

Let

U(z, s) =
[
I(z, s)

V(z, s)

]
, T =

⎡
⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎦ ,

O =
[
R∗(z) 0

0 G∗(z)

]
, M =

[
L∗(z) 0

0 C∗(z)

]
.

Then we  rewrite the PDEs in the following matrix form:(
T
d

dz
+ O + SM

)
U(z, s) = 0 (7)

2.2. The introduction of the four-order B-spline wavelet function

Let H2(I) be the Sobolev space which basically contains functions
equipped with a norm that is a combination of Lp-norms of the
function itself as well as its derivatives up to second order [12].
Let I denote a standard interval, say I = [0, L], then we introduce
approximation subspace Vbj ⊂ H2(I) for a given integer number J≥0,
consisting of scaling functions and wavelet functions.
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