International Journal of Applied Earth Observation and Geoinformation 12 (2010) 127-137

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

Toward accountable land use mapping: Using geocomputation to improve
classification accuracy and reveal uncertainty

Johan Beekhuizen?, Keith C. Clarke >*

2 Environmental Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
b Department of Geography, University of California, Santa Barbara, Santa Barbara, 93106-4060, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 2 June 2009

Received in revised form 21 December 2009
Accepted 12 January 2010

The classification of satellite imagery into land use/cover maps is a major challenge in the field of remote
sensing. This research aimed at improving the classification accuracy while also revealing uncertain
areas by employing a geocomputational approach. We computed numerous land use maps by
considering both image texture and band ratio information in the classification procedure. For each land
use class, those classifications with the highest class-accuracy were selected and combined into class-

fey‘d"’ords" probability maps. By selecting the land use class with highest probability for each pixel, we created a
ngd ;'Z\eler hard classification. We stored the corresponding class probabilities in a separate map, indicating the

spatial uncertainty in the hard classification. By combining the uncertainty map and the hard
classification we created a probability-based land use map, containing spatial estimates of the
uncertainty. The technique was tested for both ASTER and Landsat 5 satellite imagery of Gorizia, Italy,
and resulted in a 34% and 31% increase, respectively, in the kappa coefficient of classification accuracy.
We believe that geocomputational classification methods can be used generally to improve land use and
land cover classification from imagery, and to help incorporate classification uncertainty into the
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resultant map themes.
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1. Introduction

In studies of land use and land cover change, it has become
commonplace to use remotely sensed data as the input, and to use
classification and segmentation methods to derive land use/cover
maps of the Earth’s surface. Yet in spite of almost 30 years of
experience, the quality of these maps is often judged as too low for
operational applications (Foody, 2002). The growth of GIS has
meant that maps derived from satellite imagery are frequently no
longer an end product, but rather form inputs for further modelling
and analysis. The further processing of these data can result in the
propagation or amplification of classification errors (Heuvelink,
1998). Indeed, many geographic analyses become so open to error
propagation that hard facts simply do not exist, and probabilistic
and statistical methods become necessary (Comber et al., 2005).

Much research has focused on improving classification
accuracy for land use/cover mapping using remotely sensed data.
For an extensive overview of techniques to improve classification
performance we refer to Lu and Weng (2007). Traditionally, most
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classification algorithms only use spectral information extracted
from multispectral satellite imagery. In general, these classifiers
are based on the premise that different land cover classes have a
distinct spectral signature. The various reflectance values of each of
the individual pixels are assigned to a class with the most similar
spectral signature. These so-called per-pixel classifications (Lu and
Weng, 2007) have been used extensively to classify satellite
imagery with low to medium spatial resolution. At coarser spatial
resolutions pixels more frequently consist of multiple mixed
classes. This is a major problem for the ‘hard’ classification
approaches, where a pixel can only be a member of one class.
Different methods have been developed to create soft classifiers,
where a pixel can belong to multiple classes (Lu and Weng, 2007).

With the introduction of high spatial resolution satellite
imagery the impact of the mixed pixel problem has been reduced,
as pixels are more likely to be a member of only one class.
However, as the pixel size approaches the minimum size of
elements within the class, the within-class spectral variance
increases. This decreases spectral class separability and results in
lower classification accuracy (Marceau et al., 1990; Shaban and
Dikshit, 2001). In order to deal with high spectral within-class
variation new classification approaches have been developed, such
as the per-field, object-oriented and contextual classifiers (Lu and
Weng, 2007). The per-field classifiers subdivide the image into
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fields or patches, which are subsequently used in the classification
process instead of individual pixels (Aplin et al., 1999). The object-
oriented classifiers are based on spectral and geometric properties
of objects resulting from image segmentation (Benz et al., 2004).
The contextual classifiers use the spatial relationship between one
or more pixels with other pixels in the remainder of the scene to
improve classification performance (Gurney and Townshend,
1983).

The spatial properties of the image can also be represented by a
texture (Marceau et al., 1990). Texture differs from the contextual
classifiers, as it describes the spatial variation in a contiguous
group of pixels (Gurney and Townshend, 1983). Many researchers
created new texture images to use as another feature or band in the
classification process (e.g. Berberoglu et al., 2007; Franklin et al.,
2000; Gong et al., 1992; Lu and Weng, 2005; Marceau et al., 1990;
Puissant et al., 2005; Shaban and Dikshit, 2001; Wikantika, 2004).
These studies show that the use of the Grey Level Co-occurrence
Matrix (GLCM) has great potential for improving classification
accuracy. Haralick et al. (1973) originally developed this successful
texture measure. The GLCM contains the relative frequencies with
which two pixels linked by a spatial relation (displacement vector)
occur on a sliding window of the image (Pesaresi, 2000). The
second order statistics derived from this matrix describe the
texture of an image (Marceau et al., 1990). These textures can also
be derived from first order statistics, i.e. statistics calculated from
the image itself without considering pixel neighbour relationships
(Hall-Beyer, 2007). Textures based on first order statistics can also
improve classification performance (Ferro and Warner, 2002; Gong
et al., 1992). Following Gong et al. (1992), these textures will be
referred to as simple statistical transformations (SSTs). Use of
GLCM and SST textures requires decisions concerning the spectral
band, quantization level, texture statistic, size of the moving
window and - for GLCM texture only - the displacement vector.

As there are numerous possible textures resulting from
different variable settings, many studies have focused on finding
optimal combinations of these variables. However, the results
differ for each study. Recommendations for optimal window sizes
vary from larger than 31 x 31 (Karathanassi et al., 2000), 17 x 17
or 25 x 25 pixels (Marceau et al., 1990) to 7 x 7 and 9 x 9 (Shaban
and Dikshit, 2001) and to 5 x 5 (Gong et al.,, 1992). The most
suitable statistic varies from homogeneity (Puissant et al., 2005) to
standard deviation (Berberoglu et al., 2007) to the mean texture
feature (Zhang et al., 2003). Finding the optimal texture features
becomes even more complicated when multiple texture layers are
added to the spectral bands. It is extremely difficult to predict
which combinations of texture layers provide the best results.
Various studies show that adding more than one texture layer in
the classification process improves the results (Gong et al., 1992;
Shaban and Dikshit, 2001; Zhang et al., 2003), but other studies
argue that adding multiple texture layers does not significantly
improve the results (Pesaresi, 2000; Wikantika, 2004).

It is not surprising that different studies deliver seemingly
conflicting results, as the most suitable texture is dependent on
various and ad hoc factors which differed throughout these studies.
Factors like the spatial and spectral properties of the satellite
imagery, the spatial patterns of the study area, the level of
classification and the focus of the study - e.g. detection of urban
object classes (Zhang, 1999) or improving the forest-age class
separability (Franklin et al., 2001) - all contribute to the texture
performance. As every image classification differs in at least one of
these factors, it is impossible to find an optimal combination of
texture layers that can be applied across different image
classifications at different resolutions and for different instru-
ments. Next to the derivation of texture layers, the spectral bands
can also be combined as ratios to improve class separability
(Helmer et al., 2000; Jensen, 2005).

This study proposes a geocomputational approach to improve
the effectiveness of land use/cover mapping from remotely sensed
data using texture and band ratio layers. Instead of limiting the
number of possible layers based on the presumption that certain
layers provide optimal classification results, our method tries out
permutations of band ratios and texture layers recursively while
optimizing a set of error measures. The numerous computations
result in multiple accurate classifications, whose differences
provide valuable information about the uncertainty in the
classification method. We focus on two objectives:

Objective 1: increase classification accuracy;
Objective 2: include uncertainty information in the classified
land use map.

2. Methods
2.1. Case study

The classified land use maps resulting from this research will be
used as an addition to already existing land use maps. These maps
were derived from the Coordination of Information on the
Environment (CORINE) Land Cover (CLC) for dates 1990 and
2000. The CLC aims at providing consistent and up-to-date maps of
European land cover (Bossard et al., 2000; CEC, 1994). In order to
compare newly classified and CORINE maps, the classification
scheme used was the same as that used for CORINE. Due to limited
spatial resolution of especially Landsat satellite imagery and no
real need for a more detailed classification, classification detail was
limited to level 1 of the CORINE classification, resulting in the
classes artificial, agriculture, natural, and water bodies. These
classes are types of land use instead of land cover. This forms a
challenge as satellite imagery is more suitable to create land cover
maps, as spectral bands do not directly provide information about
actual land use, e.g. a patch of trees can be a natural forest, an
orchard or a park.

The proposed methodology was applied to satellite imagery
covering a 23 km? large area around Gorizia, a small city on the
Italian-Slovenian border at 45°95'N 13°62’E. The area has both
hilly and flat areas with various landscapes and spatial patterns
ranging from urban to rural to barren land. The region is being
subjected to land use change modelling and a multi-temporal data
set on land use was sought. We used a 2004 image from the
Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) and a 1991 image from the Landsat 5 Thematic Mapper
(Landsat 5 TM), both provided and processed by the University of
Trieste, Italy. Both the Landsat and ASTER-imagery were orthor-
ectified to a 15 by 15 m grid to enable easy comparison.

2.2. Classification method

Primary inputs to the classification process were the spectral
bands. First, texture or band ratio information was derived from
the spectral bands and added as an additional layer. Multiple layers
could be added in order to further improve classification accuracy.
Then the study area was classified into land cover classes using
maximum likelihood classification (MLC), as a type of land use
often consists of different land cover elements which are easier to
classify with satellite imagery (Wastfelt, 2009). In the post-
classification the land cover classes were merged into CORINE level
1 land use classes. More advanced post-classification methods for
combining land cover into land use exist, such as the spatial
relational post-classification (Wastfelt, 2009), but are not the
emphasis of this study and we did not pursue the matter further.
Fig. 1 shows the classification method used to compute the land
use maps, each time varying the additional layers.
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