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a  b  s  t  r  a  c  t

Detecting  land-use/land-cover  (LULC)  changes  in  rural–urban  fringe  areas  (RUFAs)  timely  and  accurately
using satellite  imagery  is  essential  for land-use  planning  and  management  in  China.  Although  traditional
spectral-based  change-vector  analysis  (CVA)  can  effectively  detect  LULC  change  in many  cases,  it encoun-
ters difficulties  in  RUFAs  because  of  deficiencies  in the  spectral  information  of  satellite  images.  To  detect
LULC changes  in  RUFAs  effectively,  this  paper  proposes  an extended  CVA  approach  that  incorporates
textural  change  information  into  the  traditional  spectral-based  CVA.  The  extended  CVA  was  applied  to
three  different  pilot  RUFAs  in China  with  different  remotely  sensed  data,  including  Landsat  Thematic
Mapper  (TM),  China–Brazil  Earth  Resources  Satellite  (CBERS)  and  Advanced  Land  Observing  Satellite
(ALOS)  images.  The  results  demonstrated  the  improvement  of  the  extended  CVA  compared  to  the  tradi-
tional  spectral-based  CVA  with  the  overall  accuracy  increased  between  4.66%  and  8.00%  and  the kappa
coefficient  increased  between  0.10  and  0.15,  respectively.  The  advantage  of the extended  CVA  lies in
its integration  of both  spectral  and textural  change  information  to  detect  LULC  changes,  allowing  for
effective  discrimination  of LULC  changes  that  are  spectrally  similar  but  texturally  different  in RUFAs.  The
extended  CVA  has  great  potential  to be  widely  used  for LULC-change  detection  in  RUFAs,  which  are  often
heterogeneous  and  fragmental  in nature,  with  rich  textural  information.

©  2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The rural–urban fringe area (RUFA) is often defined as the land-
scape located just outside established cities and towns, where the
countryside begins (Sullivan and Lovell, 2006). Since the launch of
economic reforms and open-door policies in the late 1970s, China
has experienced unprecedented urbanization, resulting in rapid
and sustained land-use/land-cover (LULC) changes in RUFAs (Liu
et al., 2007). Such human-induced changes, characterized by shifts
from natural to artificial land covers, have complicated impacts
on air pollution, biodiversity, and runoff and evapotranspiration
processes (Clarke et al., 1997).

Inventorying and monitoring of LULC changes is essential for
land-use planning and management in China’s rapidly changing
RUFAs. Remote sensing is a useful technology for LULC mapping
and change detection, providing advantages of frequent revisit,
global coverage, and low cost (Zhang et al., 2003). Over the past
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two decades, a number of approaches for LULC-change detection
using satellite imagery have been formulated, applied, and evalu-
ated; these can be broadly grouped into three general types (Coppin
et al., 2004; Dewan and Yamaguchi, 2009; Lu et al., 2004; Singh,
1989): (1) those based on classification of input data, such as post-
classification comparison (Yuan et al., 2005) and direct two-date
classification (Carreiras et al., 2006; Lucas et al., 2000); (2) those
based on spectral change between two acquisition dates, including
band algebra methods (Townshend and Justice, 1995), regres-
sion analysis (Fraser et al., 2005), principal component analysis
(Hartter et al., 2008), and change-vector analysis (CVA) (Bayarjargal
et al., 2006; Lambin and Strahler, 1994); and (3) those based
on the objects composed of adjacent pixels with similar spectra
(Bontemps et al., 2008; Desclee et al., 2006). Studies have shown
that different methods have their own  merits and that no sin-
gle approach is optimal and applicable to all cases (Bontemps et
al., 2008; Concheddaa et al., 2008; Dewan and Yamaguchi, 2009).
Selection of an appropriate change-detection approach, in practice,
often depends on the information requirements, data availability
and quality, time and cost constraints, and the analyst’s skill and
experience (Chen et al., 2003).

Among the spectral change-based approaches, CVA has a few
advantages: it not only can avoid shortcomings of classification-
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based approaches such as cumulative error in image classification
for individual dates, but also can detect change using all bands and
provide “from–to” change information (Chen et al., 2003). In recent
years, the advantages and potentials of CVA have been demon-
strated in studies documenting urban sprawl and updating LULC
data (Chen et al., 2003; Xian et al., 2009).

However, RUFAs are often heterogeneous and fragmental in
nature, with intensive anthropogenic activities (Sullivan and Lovell,
2006). They may  include different land-cover types, such as con-
crete, asphalt, trees, grass, water, soil, and various kinds of roof
materials, which have different radiometric characteristics in a
remotely sensed image. Defining a land-use class based on spec-
tral homogeneity is often difficult in RUFAs because some land-use
categories are often spectrally similar to other land-use types. Thus
in the case of change detection in RUFAs, large spectral differences
between two  dates do not necessarily indicate LULC change. At the
same time, the spectral response may  be close even if LULC change
has occurred. As a spectral-based change-detection approach, CVA
can often perform well when a situation satisfies the assumption
that changes on the ground cause significant changes in image pixel
values and that these spectral changes reflect mostly changes on
the ground rather than differences produced by atmospheric and
other system variations (Singh, 1989). However, spectral informa-
tion alone is not sufficient for representing LULC in RUFAs based
on remotely sensed data. The spectral-based CVA encounters diffi-
culty in detecting LULC change in RUFAs (Chen et al., 2003; Zhang
et al., 2002).

Texture refers to the tonal or gray-level variations in an image
(Pacifici et al., 2009). Because texture reflects the distribution
and variation of neighborhood pixel values, it is regarded as an
important factor that can compensate for deficiencies in spec-
tral information in satellite imagery analysis (Carleer and Wolff,
2006). For example, Gong et al. (1992) demonstrated that textural
information was useful for resolving spectral confusion between
land-cover classes. In addition, Jensen and Toll (1982) found that
combined spectral–textural image differencing provided better
change-detection results using Landsat Multi-Spectral Scanner
data. With the consideration of the rich texture information in
RUFAs, the addition of the texture information to the spectral-based
CVA can detect the LULC in RUFAs more effectively.

To effectively detect the LULC changes in RUFAs, this paper
presents an extended CVA approach that combines texture infor-
mation into the traditional spectral-based CVA. The extended CVA
approach was applied and validated by three different pilot RUFAs
in China with different remotely sensed data acquired by Land-
sat Thematic Mapper (TM), China–Brazil Earth Resources Satellite
(CBERS) and Advanced Land Observing Satellite (ALOS), respec-
tively. The remainder of this paper introduces the extended CVA
approach and presents a detailed description of the application of
the extended CVA in different pilot areas.

2. Methodology

2.1. Traditional spectral-based CVA

Malila (1980) presented the general concept of the spectral-
based CVA. A change vector can be described by the angle of change
(vector direction) and the magnitude of change from dates 1 to 2
(Johnson and Kasischke, 1998). If a pixel’s gray-level (spectral) val-
ues in two images acquired on dates t1 and t2 are represented by
G = (g1, g2, . . .,  gk)T1 and H = (h1, h2, . . .,  hk)T2, respectively, and k is
the number of spectral bands, a change vector can be defined as

�G = G − H,

where �G  represents all the change information between the two
dates for a given pixel. The change magnitude ||�G|| can be calcu-
lated by

∥∥�G
∥∥ =

√
(g1 − h1)2 + (g2 − h2)2 + · · · + (gk − hk)2 (2)

which represents the total gray-level (spectral) difference between
the two  dates. The greater ||�G|| is, the higher the possibility of
change is. Thus a decision on change is made based on whether
the change magnitude ||�G|| exceeds a specific threshold deter-
mined by qualitative or quantitative analysis. The type of change
is often identified using the vector angle in two  spectral dimen-
sions or using sector codes if more than two spectral dimensions
are involved (Chen et al., 2003). The geometric concept of CVA is
applicable to any number of spectral bands, no matter what mea-
surement scale of radiance is used (Johnson and Kasischke, 1998).

2.2. Extended CVA

Unlike the traditional spectral-based CVA, the basic idea of the
extended CVA approach is to add textural information to the tra-
ditional spectral-based CVA so that some LULC changes that are
spectrally similar but texturally different in RUFAs can be effec-
tively detected. Specifically, the extended CVA includes three major
steps. The first step is to produce the textural bands by texture
calculation and normalization. The second step is to produce the
two-band extended change-magnitude image including spectral
change information and textural change information simultane-
ously. The third step is to extract the changed pixels by the
support vector machine (SVM) approach. Fig. 1 shows the compar-
ison between the traditional CVA (Fig. 1a) and the extended CVA
(Fig. 1b).

2.2.1. Producing textural bands
Many methods are available for extracting texture informa-

tion from satellite imagery. Previous studies (Arzandeh and Wang,
2002; Shanmugan et al., 1981) reported that the most effective
approach was  to calculate texture statistics based on the gray-
level co-occurrence matrix (GLCM) proposed by Haralick (1973).
The GLCM is derived from the gray-level image that shows the joint
probability distribution of a pair of gray levels, separated at a certain
distance and a certain orientation. Eight texture features based on
the GLCM method are widely used, including homogeneity (HOM),
contrast (CON), dissimilarity (DIS), MEAN, standard deviation (SD),
entropy (ENT), angular second moment (ASM), and correlation
(COR) (Zhang et al., 2003). Detailed definitions of the abovemen-
tioned eight GLCM texture features have been provided by Haralick
(1973). However, it is not necessary to use all eight GLCM tex-
ture features simultaneously to produce the texture bands in the
extended CVA, considering their information redundancy. Accord-
ing to Hall-Beyer (2007), the eight GLCM textural parameters can
be classified into three groups: the ‘contrast’ group (CON, DIS, and
HOM), the ‘orderliness’ group (ASM and ENT), and the ‘descriptive
statistics’ group (MEAN, SD, and COR). CON, DIS, and HOM in the
‘contrast’ group are correlated with one another, as are ASM and
ENT in the ‘orderliness’ group; however, MEAN, SD, and COR in the
‘descriptive statistics’ group do not show obvious correlation. Here,
five texture features (CON, ASM COR, MEAN, and SD) were selected
to produce the five texture feature images. For the five derived tex-
tural bands to have the same value range as the spectral bands of
the Landsat TM images, the following standardization procedure
was applied:

DN′ = DN − DNmin

DNmax − DNmin
× 255, (3)
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