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Detecting land-use/land-cover (LULC) changes in rural-urban fringe areas (RUFAs) timely and accurately
using satellite imagery is essential for land-use planning and management in China. Although traditional
spectral-based change-vector analysis (CVA) can effectively detect LULC change in many cases, it encoun-
ters difficulties in RUFAs because of deficiencies in the spectral information of satellite images. To detect
LULC changes in RUFAs effectively, this paper proposes an extended CVA approach that incorporates
textural change information into the traditional spectral-based CVA. The extended CVA was applied to
three different pilot RUFAs in China with different remotely sensed data, including Landsat Thematic
Mapper (TM), China-Brazil Earth Resources Satellite (CBERS) and Advanced Land Observing Satellite
(ALOS) images. The results demonstrated the improvement of the extended CVA compared to the tradi-
tional spectral-based CVA with the overall accuracy increased between 4.66% and 8.00% and the kappa
coefficient increased between 0.10 and 0.15, respectively. The advantage of the extended CVA lies in
its integration of both spectral and textural change information to detect LULC changes, allowing for
effective discrimination of LULC changes that are spectrally similar but texturally different in RUFAs. The
extended CVA has great potential to be widely used for LULC-change detection in RUFAs, which are often
heterogeneous and fragmental in nature, with rich textural information.
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1. Introduction

The rural-urban fringe area (RUFA) is often defined as the land-
scape located just outside established cities and towns, where the
countryside begins (Sullivan and Lovell, 2006). Since the launch of
economic reforms and open-door policies in the late 1970s, China
has experienced unprecedented urbanization, resulting in rapid
and sustained land-use/land-cover (LULC) changes in RUFAs (Liu
et al., 2007). Such human-induced changes, characterized by shifts
from natural to artificial land covers, have complicated impacts
on air pollution, biodiversity, and runoff and evapotranspiration
processes (Clarke et al., 1997).

Inventorying and monitoring of LULC changes is essential for
land-use planning and management in China’s rapidly changing
RUFAs. Remote sensing is a useful technology for LULC mapping
and change detection, providing advantages of frequent revisit,
global coverage, and low cost (Zhang et al., 2003). Over the past
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two decades, a number of approaches for LULC-change detection
using satellite imagery have been formulated, applied, and evalu-
ated; these can be broadly grouped into three general types (Coppin
et al., 2004; Dewan and Yamaguchi, 2009; Lu et al., 2004; Singh,
1989): (1) those based on classification of input data, such as post-
classification comparison (Yuan et al., 2005) and direct two-date
classification (Carreiras et al., 2006; Lucas et al., 2000); (2) those
based on spectral change between two acquisition dates, including
band algebra methods (Townshend and Justice, 1995), regres-
sion analysis (Fraser et al., 2005), principal component analysis
(Hartter etal.,2008), and change-vector analysis (CVA) (Bayarjargal
et al, 2006; Lambin and Strahler, 1994); and (3) those based
on the objects composed of adjacent pixels with similar spectra
(Bontemps et al., 2008; Desclee et al., 2006). Studies have shown
that different methods have their own merits and that no sin-
gle approach is optimal and applicable to all cases (Bontemps et
al., 2008; Concheddaa et al., 2008; Dewan and Yamaguchi, 2009).
Selection of an appropriate change-detection approach, in practice,
often depends on the information requirements, data availability
and quality, time and cost constraints, and the analyst’s skill and
experience (Chen et al., 2003).

Among the spectral change-based approaches, CVA has a few
advantages: it not only can avoid shortcomings of classification-
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based approaches such as cumulative error in image classification
for individual dates, but also can detect change using all bands and
provide “from-to” change information (Chen et al., 2003). In recent
years, the advantages and potentials of CVA have been demon-
strated in studies documenting urban sprawl and updating LULC
data (Chen et al., 2003; Xian et al., 2009).

However, RUFAs are often heterogeneous and fragmental in
nature, with intensive anthropogenic activities (Sullivan and Lovell,
2006). They may include different land-cover types, such as con-
crete, asphalt, trees, grass, water, soil, and various kinds of roof
materials, which have different radiometric characteristics in a
remotely sensed image. Defining a land-use class based on spec-
tral homogeneity is often difficult in RUFAs because some land-use
categories are often spectrally similar to other land-use types. Thus
in the case of change detection in RUFAs, large spectral differences
between two dates do not necessarily indicate LULC change. At the
same time, the spectral response may be close even if LULC change
has occurred. As a spectral-based change-detection approach, CVA
can often perform well when a situation satisfies the assumption
that changes on the ground cause significant changes in image pixel
values and that these spectral changes reflect mostly changes on
the ground rather than differences produced by atmospheric and
other system variations (Singh, 1989). However, spectral informa-
tion alone is not sufficient for representing LULC in RUFAs based
on remotely sensed data. The spectral-based CVA encounters diffi-
culty in detecting LULC change in RUFAs (Chen et al., 2003; Zhang
etal., 2002).

Texture refers to the tonal or gray-level variations in an image
(Pacifici et al., 2009). Because texture reflects the distribution
and variation of neighborhood pixel values, it is regarded as an
important factor that can compensate for deficiencies in spec-
tral information in satellite imagery analysis (Carleer and Wollff,
2006). For example, Gong et al. (1992) demonstrated that textural
information was useful for resolving spectral confusion between
land-cover classes. In addition, Jensen and Toll (1982) found that
combined spectral-textural image differencing provided better
change-detection results using Landsat Multi-Spectral Scanner
data. With the consideration of the rich texture information in
RUFAs, the addition of the texture information to the spectral-based
CVA can detect the LULC in RUFAs more effectively.

To effectively detect the LULC changes in RUFAs, this paper
presents an extended CVA approach that combines texture infor-
mation into the traditional spectral-based CVA. The extended CVA
approach was applied and validated by three different pilot RUFAs
in China with different remotely sensed data acquired by Land-
sat Thematic Mapper (TM), China-Brazil Earth Resources Satellite
(CBERS) and Advanced Land Observing Satellite (ALOS), respec-
tively. The remainder of this paper introduces the extended CVA
approach and presents a detailed description of the application of
the extended CVA in different pilot areas.

2. Methodology
2.1. Traditional spectral-based CVA

Malila (1980) presented the general concept of the spectral-
based CVA. A change vector can be described by the angle of change
(vector direction) and the magnitude of change from dates 1 to 2
(Johnson and Kasischke, 1998). If a pixel’s gray-level (spectral) val-
ues in two images acquired on dates t; and t, are represented by
G=(g1,82, ... &) and H=(hy, hy, ..., h)T2, respectively, and k is
the number of spectral bands, a change vector can be defined as

AG=G-H,

where AG represents all the change information between the two
dates for a given pixel. The change magnitude ||AG]|| can be calcu-
lated by

lacl] = Vg ~hf (g2 o 5+ (ge e (2)

which represents the total gray-level (spectral) difference between
the two dates. The greater ||AG]|| is, the higher the possibility of
change is. Thus a decision on change is made based on whether
the change magnitude ||AG]|| exceeds a specific threshold deter-
mined by qualitative or quantitative analysis. The type of change
is often identified using the vector angle in two spectral dimen-
sions or using sector codes if more than two spectral dimensions
are involved (Chen et al., 2003). The geometric concept of CVA is
applicable to any number of spectral bands, no matter what mea-
surement scale of radiance is used (Johnson and Kasischke, 1998).

2.2. Extended CVA

Unlike the traditional spectral-based CVA, the basic idea of the
extended CVA approach is to add textural information to the tra-
ditional spectral-based CVA so that some LULC changes that are
spectrally similar but texturally different in RUFAs can be effec-
tively detected. Specifically, the extended CVA includes three major
steps. The first step is to produce the textural bands by texture
calculation and normalization. The second step is to produce the
two-band extended change-magnitude image including spectral
change information and textural change information simultane-
ously. The third step is to extract the changed pixels by the
support vector machine (SVM) approach. Fig. 1 shows the compar-
ison between the traditional CVA (Fig. 1a) and the extended CVA
(Fig. 1b).

2.2.1. Producing textural bands

Many methods are available for extracting texture informa-
tion from satellite imagery. Previous studies (Arzandeh and Wang,
2002; Shanmugan et al., 1981) reported that the most effective
approach was to calculate texture statistics based on the gray-
level co-occurrence matrix (GLCM) proposed by Haralick (1973).
The GLCM is derived from the gray-level image that shows the joint
probability distribution of a pair of gray levels, separated at a certain
distance and a certain orientation. Eight texture features based on
the GLCM method are widely used, including homogeneity (HOM),
contrast (CON), dissimilarity (DIS), MEAN, standard deviation (SD),
entropy (ENT), angular second moment (ASM), and correlation
(COR) (Zhang et al., 2003). Detailed definitions of the abovemen-
tioned eight GLCM texture features have been provided by Haralick
(1973). However, it is not necessary to use all eight GLCM tex-
ture features simultaneously to produce the texture bands in the
extended CVA, considering their information redundancy. Accord-
ing to Hall-Beyer (2007), the eight GLCM textural parameters can
be classified into three groups: the ‘contrast’ group (CON, DIS, and
HOM), the ‘orderliness’ group (ASM and ENT), and the ‘descriptive
statistics’ group (MEAN, SD, and COR). CON, DIS, and HOM in the
‘contrast’ group are correlated with one another, as are ASM and
ENT in the ‘orderliness’ group; however, MEAN, SD, and COR in the
‘descriptive statistics’ group do not show obvious correlation. Here,
five texture features (CON, ASM COR, MEAN, and SD) were selected
to produce the five texture feature images. For the five derived tex-
tural bands to have the same value range as the spectral bands of
the Landsat TM images, the following standardization procedure
was applied:

DN — DNppin

DN = —— 1
DNmax — DNmin

x 255, (3)
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