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a b s t r a c t

Traffic engineering of IP networks requires the characterization and modeling of network traffic on multi-
ple time scales due to the existence of several statistical properties that are invariant across a range of
time scales, such as self-similarity, LRD and multifractality. These properties have a significant impact
on network performance and, therefore, traffic models must be able to incorporate them in their math-
ematical structure and parameter inference procedures. In this work, we address the modeling of net-
work traffic using a multi-time-scale framework. We describe and evaluate the performance of two
classes of hierarchical traffic models (Markovian and Lindenmayer-Systems based traffic models) that
incorporate the notion of time scale using different approaches: indirectly in the model structure through
a fitting of the second-order statistics, in the case of the Markovian models, or directly, in the case of the
Lindenmayer-Systems based models. Two Markovian models are proposed to describe the traffic multi-
scale behavior: the fitting procedure of the first model matches the complete distribution of the arrival
process at each time scale of interest, while the second proposed model is constructed using a hierarchi-
cal procedure that, starting from a MMPP that matches the distribution of packet counts at the coarsest
time scale, successively decomposes each MMPP state into new MMPPs that incorporate a more detailed
description of the distribution at finner time scales. The traffic process is then represented by a MMPP
equivalent to the constructed hierarchical structure. The proposed L-System model starts from an initial
symbol and iteratively generates sequences of symbols, belonging to an alphabet, through successive
application of production rules. In a traffic modeling context, the symbols are interpreted as packet arri-
val rates and each iteration is associated to a finer time scale of the traffic. The accuracy of the different
proposed models is evaluated by comparing the probability mass function at each time scale and the
queuing behavior (as assessed by the loss probability) corresponding to measured and synthetic traces
generated from the inferred models. The well-known pOct Bellcore trace is used to evaluate the accuracy
of the proposed models and fitting procedures. The results obtained show that these models are very
effective in matching the main characteristics of the trace over the different time scales and their perfor-
mances are similar.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The complexity associated to mechanisms for traffic generation
and control, as well as the diversity of applications and services,
have introduced several peculiar behaviors in network traffic, such
as self-similarity, long-range dependence and multifractality,
which have a significant impact on network performance [1–4].
These behaviors have in common a property of statistical invari-
ance across a range of time scales. Thus, suitable traffic models
must be able to capture statistical behavior on multiple time

scales. Multi-time-scale characteristics can be incorporated in the
parameter fitting procedure or can be intrinsically embedded in
the model structure.

This paper extends the work published in [5] by evaluating and
comparing the performance of two classes of traffic models,
Markovian and Lindenmayer-Systems based models, that incorpo-
rate the notion of time scale using different approaches: indirectly
via the fitting of the second-order statistics, in the case of Markov-
ian models, or directly in the model structure, in the case of
Lindenmayer-Systems based models.

The first Markovian approach proposes a parameter fitting pro-
cedure for a superposition of discrete-time Markov Modulated
Poisson Processes (dMMPPs) that captures self-similar behavior
over a range of time scales. Each dMMPP models a specific time
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scale and the parameter fitting procedure matches, at each time
scale, a dMMPP to a Probability Mass Function (PMF) that describes
the contribution of that time scale to the overall traffic behavior.
The number of states of each dMMPP is not fixed a priori; it is
determined as part of the fitting procedure. This model will be des-
ignated by superposition model. In the second proposed Markovian
model, the construction procedure successively decomposes
dMMPP states into new dMMPPs, thus refining the traffic process
by incorporating the characteristics offered by finer time scales.
This refinement process is iterated until a pre-defined number of
time scales are integrated. Finally, a dMMPP incorporating this
hierarchical structure is derived. Similarly to the previous model,
the number of states of each dMMPP is not fixed a priori; it is
determined as part of the fitting procedure. This second model will
be designated by decomposition model. The third proposed traffic
model is based on stochastic Lindenmayer-Systems (hereafter re-
ferred to as L-Systems). L-Systems are string rewriting techniques
which were introduced by biologist A. Lindenmayer in 1968 as a
method to model plant growth [6] and are characterized by an
alphabet, an axiom and a set of production rules: the alphabet is
a set of symbols; the production rules define transformations of
symbols into strings of symbols; starting from an initial string
(the axiom), an L-System constructs iteratively sequences of sym-
bols through replacement of each symbol by the corresponding
string according to the production rules. If the production rules
are random, the L-System is called a stochastic L-System and can
be used to recursively construct random sequences with multi-
time-scale behavior.

The accuracy of the different models is evaluated by applying
them to the well-known pOct Bellcore trace (that exhibits self-
similar behavior) and comparing the PMF at each time scale and
the queuing behavior (as assessed by the loss probability) corre-
sponding to the measured and to synthetic traces generated from
the inferred models. Our results show that the proposed fitting
methods are very effective in matching the PMF at the various
time scales and lead to an accurate prediction of the queuing
behavior.

Several fitting procedures have been proposed in the literature
for estimating the parameters of MMPPs from empirical data
[7–14]. However, most procedures only apply to 2-MMPPs, which
can capture traffic burstiness but have an insufficient number of
states to reproduce variability over a wide range of time scales.
On the other hand, the fitting procedures for MMPPs with an arbi-
trary number of states mainly concentrate on matching first- and/
or second-order statistics, without addressing directly the issue of
modeling over multiple time scales. The application of stochastic
L-Systems in the characterization of packet arrival processes was
first introduced by the authors in [15], with very good fitting
results.

The paper is organized as follows. Section 2 describes the pro-
posed hierarchical Markovian models, including their parameter
fitting procedures; Section 3 presents the L-System model and its
corresponding parameter fitting procedure; Section 4 presents
and discusses the obtained comparison results; and, finally, Section
5 presents the main conclusions.

2. Hierarchical Markovian models

The hierarchical Markovian models are constructed based on
the PMF of the arrival process at each time scale, thus enabling
them to capture the traffic self-similar behavior over a range of
time scales. The number of time scales to consider, L, is fixed a pri-
ori and time scales are numbered in an ascending way, from l = 1
(corresponding to the largest scale) to l = L (corresponding to the
finest one).

2.1. Superposition model

The first traffic model is based on the superposition of dMMPPs,
each one representing a specific time scale. The left part of Fig. 1
illustrates the dMMPP construction methodology for the simple
case of having only three time scales and two-state dMMPPs at
each time scale. The dMMPP associated to time scale l will be des-
ignated by dMMPP(l), and its corresponding number of states by
N(l). The flow diagram of the inference procedure is represented
in the left part of Fig. 2 where, basically, four major steps can be
identified: (i) calculation of the data vectors (corresponding to
the average number of arrivals per time interval) at each time
scale, by applying an iterative aggregation process that starts at
the finest time scale and ends at the largest one; (ii) calculation
of the empirical PMF corresponding to the largest time scale and
inference of the corresponding dMMPP; (iii) for the other time
scales (starting from the largest to the finest one), calculation of
the empirical PMF, calculation of its deconvolution from the empir-
ical PMF of the preceding time scale and inference of a dMMPP that
adjusts the resulting empirical PMF (the shaded part of the flow
diagram); (iv) calculation of matrices K and P of the final dMMPP
through the superposition of the different dMMPPs that were in-
ferred for each time scale. The different steps of the inference pro-
cedure will be detailed later in the section.

2.2. Decomposition model

The second proposed traffic model is constructed based on a
decomposition process that successively decomposes the states
of a dMMPP corresponding to a certain time scale on new dMMPPs
belonging to the immediately following finer time scale, refining in
this way the traffic process by including the characteristics that are
offered by successively finer time scales. The procedure starts at
the largest time scale by inferring a dMMPP that adjusts the PMF
corresponding to that scale. As part of the parameter inference pro-
cedure, each time interval of the data sequence is attributed to a
state of the dMMPP; in this way, a new PMF will be associated to
each state of the dMMPP. On the next finer time scale, each state
of the dMMPP is decomposed into a new dMMPP that adjusts the
contribution of that time scale to the PMF of the state from which
the dMMPP descends. In this way, a child dMMPP gives a more de-
tailed description of the PMF corresponding to its parent state. This
refinement process is iterated until a pre-defined number of time
scales has been integrated into the model. Finally, a dMMP that
incorporates this hierarchical structure is derived.

The construction procedure of the decomposition model can be
described by a tree where, with the exception of the root node,
each node of the tree corresponds to a state of a dMMPP and each
level of the tree corresponds to a time scale. The right part of Fig. 1
illustrates the construction methodology of this dMMPP, again for
the simple case of considering only three time scales and two-sate
dMMPPs at each time scale. Each state of a dMMPP will be repre-
sented by a vector that indicates the path from the highest level
predecessor (that is, the state at the largest scale, l = 1, from which
it descends) to itself. So, a state that is located at time scale l will be
represented by a vector of the type~s ¼ ðs1; s2; . . . ; slÞ; si 2 N. Each
dMMPP will be represented by the state that originated it, that
is, its parent state. So, we consider that dMMPP~s represents the
dMMPP that is generated by state~s and f1;2; . . . ;N~sg is the set of
its states, where N~s designates the number of states. The root node
of the tree corresponds to a virtual node, designated by~s ¼ ;, and is
used to represent the dMMPP that is located at the largest time
scale, l = 1. This dMMPP will be designated by root dMMPP. In this
way, the states of the dMMPPs that belong to the tree structure are
characterized by vectors ~s ¼ ðs1; s2; . . . ; slÞ; l 2 N, with
siþ1 2 f1;2; . . . ;N~si� g; i ¼ 0;1; . . . ; l� 1; here,~sj� designates the sub-
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