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a b s t r a c t

The article presents an analytical model of wireless networks using the IEEE 802.11 protocol to access the
transport medium. The model allows to determine such key factors of the quality of service as transmis-
sion delays and losses. The model is based on diffusion approximation approach which was proposed
three decades ago to model wired networks. We show that it can be adapted to take into consideration
the input streams with general interarrival time distributions and servers with general service time dis-
tributions. The diffusion approximation has been chosen because of fairly general assumptions of models
based on it, hard to be represented in Markov models. A queueing network model can have an arbitrary
topology, the intensity of transmitted flows can be represented by non-Poisson (even self-similar)
streams, the service times at nodes can be defined by general distributions. These assumptions are impor-
tant: because of the CSMA/CA algorithm, the overall times needed to sent a packet are far from being
exponentially distributed and therefore the flows between nodes are non-Poisson. Diffusion approxima-
tion allows us also to analyse the of transient behaviour of a network when traffic intensity is changing
with time.

� 2010 Published by Elsevier B.V.

1. Introduction

The traffic transmitted by wireless networks has become more
and more important, hence the performance and QoS issues of
these networks should be carefully studied. The performance of
IEEE 802.11 standard for wireless networks, its Carrier Sense Mul-
tiple Access with Collision Avoidance (CSMA/CA) scheme with
exponential backoff mechanism and its variants used to support
asynchronous transfers, were thoroughly studied either analyti-
cally or by simulation e.g. in [1,15,4,2,21,25,26]. The studies usu-
ally refer to the limit high traffic conditions. The relationships
among throughput, blocking and collision probabilities are ob-
tained, often with the use of a discrete-time Markov chain and then
the performance of the backoff mechanism is studied.

Here, we propose a model which allows us to study not only the
throughput of nodes using IEEE 802.11 standard, but also predicts
the queue distributions at each node of the studied network, as
well as waiting times distributions – hence the-end-to-end delays
– and the loss probabilities due to the buffer overflows.

The model is based on the diffusion approximation which is a
classical modelling method developed in 70-ties [12–14] to study

the performance of wired networks. The model is a typical queueing
network one, where service stations represent nodes, service times
represent the time needed to send a packet and queues at stations
model the queues of packets at nodes. Once we obtain the queue dis-
tribution, we may also predict the waiting time distribution and the
probability that the queue reaches its maximum value which
approximates packet loss probability due to a saturated buffer.

The method can be used to model networks composed of a large
number of nodes, e.g. mesh networks. It also allows the analysis of
transient states occurring because of time-dependent traffic inten-
sity or because of the changes in the network topology.

The main contribution of the article is a discussion how the
CSMA/CA scheme with exponential backoff mechanism can be
incorporated in this model and showing how the new model can
be solved numerically.

The article is organised as follows. Section 2 recalls the princi-
ples of standard diffusion approximation model applied to a single
station with limited queues with general independent distribu-
tions of interarrival and service times, i.e. the G/G/1/N queue. Both
steady state and transient state solutions are given. The transient
state model was proposed previously by the authors, [6,7]. Section
3 presents the diffusion approximation model of a single node
using CSMA/CA scheme with exponential backoff mechanism.
Section 4 shows how the entire network of nodes with arbitrary
topology can be solved. Some numerical examples are given.
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2. Diffusion model of a G/G/1/N station

Let A(x),B(x) denote the interarrival and service time distribu-
tions at a service station. The distributions are general, but not
specified, and the method requires only their first two moments.
The means are E[A] = 1/k,E[B] = 1/l and variances are Var½A� ¼
r2

A;Var½B� ¼ r2
B. We also denote squared coefficients of variation

as C2
A ¼ r2

Ak
2 and C2

B ¼ r2
Bl2 � NðtÞ represents the number of cus-

tomers present in the system at time t.
As we assume that the interarrival times are independent and

identically distributed random variables, hence, according to the
central limit theorem, the number of customers arriving at the inter-
val of length t (sufficiently long to ensure a large number of arrivals)
can be approximated by the normal distribution with mean kt and
variance r2

Ak
3t. Similarly, the number of customers served in this

time is approximately normally distributed with mean lt and vari-
ance r2

Bl3t, provided that the server is busy all the time. Conse-
quently, the changes of N(t) within interval [0, t], N(t) � N(0), have
approximately normal distribution with mean (k � l)t and variance
r2

Ak3 þ r2
Bl3

� �
t.

Diffusion approximation [22,23] replaces the process N(t) by a
continuous diffusion process X(t). The incremental changes of
X(t), dX(t) = X(t + dt) � X(t) are normally distributed with the mean
bdt and variance adt, where b, a are the coefficients of the diffusion
equation

@f ðx; t; x0Þ
@t

¼ a
2
@2f ðx; t; x0Þ

@x2 � b
@f ðx; t; x0Þ

@x
; ð1Þ

which defines the conditional pdf of X(t)

f ðx; t; x0Þ ¼ P½x 6 XðtÞ < xþ dxjXð0Þ ¼ x0�:

Both processes X(t) and N(t) have normally distributed changes;
the choice b ¼ k� l;a ¼ r2

Ak
3 þ r2

Bl3 ¼ C2
Akþ C2

Bl ensures the
same ratio of time-growth of mean and variance of these distribu-
tions. The density of the diffusion process approximates the distri-
bution of N(t): p(n, t;n0) � f(n, t;n0), and in steady state p(n) � f(n).

More formal justification of diffusion approximation is in limit
theorems for G/G/1 system given by Iglehart and Whitt [16,17],
but only for nonstationary processes.

The process N(t) is never negative, hence X(t) should be also re-
strained to x P 0. A simple solution is to put a reflecting barrier at
x = 0 [19,20].

The reflecting barrier excludes the stay at zero: the process is
immediately reflected, therefore this version of diffusion with
reflecting barrier is a heavy-load approximation. This inconve-
nience can be removed by the introduction of another limit condi-
tion at x = 0: a barrier with instantaneous (elementary) jumps [12].
When the diffusion process comes to x = 0, it remains there for
the time exponentially distributed with a parameter k0 and then
it returns to x = 1. The time when the process is at x = 0 corre-
sponds to the idle time of the system.

In the case of a queue limited to N positions, the second barrier
of the same type is placed at x = N. Coming to the barrier at x = N,
the process stays there for a time corresponding to the period
when the queue is full and incoming customers are lost and then,
after the completion of the current service, the process jumps to
x = N � 1. The model equations become [12]

@f ðx; t; x0Þ
@t

¼ a
2
@2f ðx; t; x0Þ

@x2 � b
@f ðx; t; x0Þ

@x
þ

k0p0ðtÞdðx� 1Þ þ kNpNðtÞdðx� N þ 1Þ;
dp0ðtÞ

dt
¼ lim

x!0

a
2
@f ðx; t; x0Þ

@x
� bf ðx; t; x0Þ

� �
� k0p0ðtÞ;

dpNðtÞ
dt

¼ lim
x!N

�a
2
@f ðx; t; x0Þ

@x
þ bf ðx; t; x0Þ

� �
� kNpNðtÞ; ð2Þ

where d(x) is Dirac delta function.

2.1. Steady state

In stationary state Eq. (2) become ordinary differential ones and
their solution, if . = k/l – 1, can be expressed as:

f ðxÞ ¼

kp0
�b ð1� ezxÞ; for 0 < x 6 1;
kp0
�b ðe�z � 1Þezx; for 1 6 x 6 N � 1;
lpN
�b ðezðx�NÞ � 1Þ; for N � 1 6 x < N;

8>><
>>:

where z ¼ 2b
a and p0, pN are determined through normalization

p0 ¼ lim
t!1

p0ðtÞ ¼ 1þ .ezðN�1Þ þ .
1� .

½1� ezðN�1Þ�
� ��1

;

pN ¼ lim
t!1

pNðtÞ ¼ .p0ezðN�1Þ:

The steady state solution does not depend on the distributions
of the sojourn times in boundaries, but only on their first moments.

2.2. Transient state

First, we obtain the density /(x, t;x0) of the diffusion process
with two absorbing barriers at x = 0 and x = N, started at t = 0 from
x = x0, cf. [5]

/ðx; t; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2Pat
p

X1
n¼�1

ðan � bnÞ;

where

an ¼ exp
bx0n
a
� ðx� x0 � x0n � btÞ2

2at

" #
;

bn ¼ exp
bx00n
a
�

x� x0 � x00n � bt
� �2

2at

" #
;

and x0n ¼ 2nN; x00n ¼ �2x0 � x0n.
If the initial condition is defined by a function w(x), x 2 (0,N),

limx?0w(x) = limx?Nw(x) = 0, then the pdf of the process has the
form /ðx; t; wÞ ¼

R N
0 /ðx; t; nÞwðnÞdn.

Then the pdf f(x, t;w) of the diffusion process with elementary
returns from both barriers is expressed as

f ðx; t; wÞ ¼ /ðx; t; wÞ þ
Z t

0
g1ðsÞ/ðx; t � s; 1Þds

þ
Z t

0
gN�1ðsÞ/ðx; t � s; N � 1Þds: ð3Þ

The densities g1(t) and gN(t) of starting new processes at x = 1
and x = N � 1 due to jumps from neighboring barriers can be de-
fined with the use of functions c0(t) and cN(t):

g1ðsÞ ¼
Z s

0
c0ðtÞl0ðs� tÞdt;

gN�1ðsÞ ¼
Z s

0
cNðtÞlNðs� tÞdt;

where l0(x), lN(x) are the densities of sojourn times in x = 0 and x = N.
Note that the distributions of these times are not restricted to expo-
nential ones. The densities c0(t), cN(t) of the probability that at time t
the process enters to x = 0 or x = N depend in turn on g1(t) and gN(t):

c0ðtÞ ¼ p0ð0ÞdðtÞ þ ½1� p0ð0Þ � pNð0Þ�cw;0ðtÞ

þ
Z t

0
g1ðsÞc1;0ðt � sÞds

þ
Z t

0
gN�1ðsÞcN�1;0ðt � sÞds;
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