

Available online at www.sciencedirect.com

Palaeogeography, Palaeoclimatology, Palaeoecology 237 (2006) 465-482

www.elsevier.com/locate/palaeo

PALAEO

Late Miocene development of the western Pacific warm pool: Planktonic foraminifer and oxygen isotopic evidence

Qianyu Li ^{a,b,*}, Baohua Li ^c, Guangfa Zhong ^a, Brian McGowran ^b, Zuyi Zhou ^a, Jiliang Wang ^a, Pinxian Wang ^a

^a State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

^b Department of Geology and Geophysics, The University of Adelaide, Adelaide SA 5005, Australia

^c Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China

Received 29 January 2005; received in revised form 10 December 2005; accepted 15 December 2005

Abstract

The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer *Globoquadrina dehiscens* from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of *G. dehiscens* and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic δ^{18} O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of *G. dehiscens* from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Western Pacific Warm Pool (WPWP); South China Sea, ODP Leg 184; Indonesian seaway; Miocene; Planktonic foraminifers; Oxygen isotope

1. Introduction

Characterized by a thick layer of warm surface water with a deep thermocline down to $\sim 170-300$ m, the

E-mail addresses: qli01@mail.tongji.edu.cn, qianyu.li@adelaide.edu.au (Q. Li).

western Pacific warm pool (WPWP) occupies much of the tropical–subtropical region of the western Pacific and eastern Indian oceans (Yan et al., 1992). The WPWP is maintained by an intensified Equatorial Current and increased strength of trade winds that also help strengthen the Equatorial Countercurrent systems in the region. With average annual temperatures >28 °C, the WPWP acts as an important source of water vapor and latent heat for high latitudes. Relative stable sea surface temperature

^{*} Corresponding author. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China. Tel.: +86 21 65987968; fax: +86 21 65988808.

has been observed from within the core of the WPWP over the entire Pleistocene, implying little long-term change in the tropical net radiation budget (De Garidel-Thoron et al., 2005). Although the role of tropical heat transport in the late Cenozoic global climate change has been recently recognized (Lea et al., 2000; Koutavas et al., 2002; Visser et al., 2003), the early history of the WPWP remained little known. On the basis of planktonic foraminifer paleogeography, Kennett et al. (1985) suggested that the WPWP likely formed after the closure of the Indonesia seaway during the late Miocene, ~8 Ma. Srinivasan and Sinha (1998), however, indicated the final closing of the Indonesian seaway at ~5.2 Ma by referring also to planktonic foraminifer evidence.

In the Indo-western Pacific region, the late Miocene, from ~ 11.5 to 5.3 Ma, is not only marked by a progressive closing of the Indonesian seaway (Hall, 2002) but also by the onset of a final major episode of Himalayan– Tibetan uplift (Tapponnier et al., 2001). The tectonicinduced geomorphological changes helped transform regional paleoceanography and paleoclimate to near the modern patterns with strong trade winds and intense Equatorial countercurrents (Kennett et al., 1985; Ruddiman, 1997). A narrowing Indonesian seaway caused warm water pileup in the tropical western Pacific, and the existence of any early warm pool must have exerted a significant role similar to today in modulating the global climate (Kuhnt et al., 2004). Among the oceanographic characteristics associated with a warm pool are increased latitudinal and longitudinal temperature gradients that could be revealed by paleobiological and geochemical records. For example, the modern WPWP with its deep thermocline is supporting abundant mixed layer planktonic foraminifers such as Globigerinoides and fewer thermocline dwellers including Globorotalia and Sphaerodinella (Bé, 1977). If the present is any key

Table 1

Site localities and	estimated age fo	r the LO of G	<i>dehiscens</i> on the time	scale of Berggren et al.	(1995)
	0			00	· · · ·

Site	Latitude	Longitude	Water depth (m)	Zone	Age (Ma)	References
W Pacific Oce	an					
DSDP 206	-32.013	165.452	3196	N16 (mid)	9.5	Kennett, 1973
DSDP 207	-36.962	165.434	1389	N16 (mid)	9.5	Kennett, 1973
DSDP 289	-0.499	158.512	2206	N16 (base)	9.8	Keller, 1985
DSDP 292	15.819	124.651	2943	N16 (mid)	9.5	Keller, 1980
DSDP 296	29.340	133.525	2920	N15/N16	9.8	Keller, 1980
DSDP 586	-0.497	158.498	2207	N17/N18	6.0	Jenkins and Srinivasan, 1986
DSDP 588	- 26.112	161.227	1533	N16 (mid)	9.5	Jenkins and Srinivasan, 1986
DSDP 590	-31.167	163.358	1299		9.5	Spencer-Cervato et al., 1994
DSDP 592	-36.473	165.442	1088	N16 (mid)	9.5	Jenkins and Srinivasan, 1986
DSDP 593	-40.508	167.674	1068		9.8	Spencer-Cervato et al., 1994
ODP 806	0.320	159.360	2520	N18 (base)	5.6	Chaisson and Leckie, 1993
ODP 1143	9.362	113.285	2771	N15 (top)	9.8	This study
ODP 1146	19.457	116.273	2091	N16 (base)	9.8	This study
ODP 1148	18.837	116.565	3297	N16 (base)	9.8	This study
N Pacific Oced	ın					
DSDP 310	36.868	176.901	3516	N16 (upper)	9.0	Keller, 1980
E Pacific Ocea	in					
DSDP 77	0.482	-133.228	4291	N17 (upper)	6.0	Keller, 1981
DSDP 503	4.051	-95.637	3672		5.5	Spencer-Cervato et al., 1994
DSDP 573	0.498	-133.310	4301		5.5	Spencer-Cervato et al., 1994
ODP 846	-3.095	-90.818	3295	N17 (upper)	6.0	Vincent and Toumarkine, 1995
ODP 848	-2.993	-110.480	3867	N17 (upper)	6.0	Vincent and Toumarkine, 1995
NE Indian Oce	ean					
DSDP 214	-11.337	88.718	1655	N17 (upper)	6.0	Srinivasan and Sinha, 1991
ODP 758	5.384	90.361	2924	N20	3.9	Peirce et al., 1989
ODP 761	-16.738	115.535	2168	N17/N18	5.8	Zachariasse, 1992
W Atlantic Oce	ean					
DSDP 502	11.490	-79.380	3051		6.0	Spencer-Cervato et al., 1994
ODP 925	4.205	-43.488	3040	N17 (upper)	6.0	Chaisson and Pearson, 1997

Download English Version:

https://daneshyari.com/en/article/4469426

Download Persian Version:

https://daneshyari.com/article/4469426

Daneshyari.com