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a b s t r a c t

The application of three techniques for the reconstruction of the permittivity profile of cylindrical

objects from scattered field measurements is studied in the present paper. These approaches are

applied to two-dimensional configurations. After an integral formulation, a discretization using the

method of moments (MoM) is applied. Considering that the microwave imaging is recast as a nonlinear

optimization problem, a cost functional is defined by the norm of a difference between the measured

scattered electric field and that calculated for an estimated relative permittivity distribution. Thus, the

permittivity profile can be obtained by minimizing the cost functional. In order to solve this inverse

scattering problem, three techniques are employed. The first is based on a basic real coded genetic

algorithms (GAs). The second is a hybrid technique (mGA-CG) which is based on a conjunction of a

micro genetic algorithm (mGA) approach with the conjugate gradient based method (CG). The third is

an application of an artificial neural network (ANN) having multilayered perceptrons architecture

(MLPs). Three algorithms: conjugate gradient with Polak–Ribiere updates (CGP), Levenberg–Marquardt

(LM) and gradient descent (GD) are used to train the ANN. Computer simulations of these methods are

performed for reconstruction of circular cylinders against laboratory-controlled microwave data.

& 2010 Elsevier GmbH. All rights reserved.

1. Introduction

The electromagnetic imaging of material parameters of
unknown objects remains one of the most interesting and
important topics due to its practical applications such as,
detection of buried objects [1], non-destructive evaluation of
materials [2], and biomedical diagnostics [3–5], etc. In microwave
imaging, the objective is to characterize an unknown object by its
complex permittivity from measurements of the scattered field
which results when a known incident wave interacts with the
object. The wave-object interaction can be described by two
contrast-source integral equations which link the resulting
scattered and total fields to a contrast (or object) function
representative of the complex permittivity. Electromagnetic
inverse problems are characterized by their nonlinearity and ill-
posedness [6]. By ill-posedness (in the sense of Hadamard) it is
meant that one of the following conditions is not satisfied: (i) the
existence of the solution; (ii) the uniqueness of the solution; or
(iii) the continuity of the inverse mapping. Over the past decades,
significant progress has been made in the development of

reconstruction algorithms. The diffraction tomographic algo-
rithms have been developed to solve the inverse scattering
problem. The formulations are based on the Born approximation
in which the total field within the object is approximately equal to
the incident field [7,8]. The limitations of diffraction tomography
moreover stimulated the development of iterative methods and
stochastic approaches. Many deterministic algorithms are applied
for electromagnetic inverse scattering problem such as, the
Newton–Kantorovich method [9,10], modified gradient method
[11] and distorted Born iterative method [12]. These methods
represent the microwave imaging as a nonlinear optimization
problem. The final permittivity profile is computed iteratively.
Indeed, during each iteration, the measured scattered field is
compared with the scattered field computed from the numerical
model. Then, these parameters profiles are progressively adjusted
by minimizing the error between the two data sets. The major
problem of these methods is due to the requirement of an
accurate initial estimate profile for the object. To overcome these
difficulties, others approaches based on stochastic methods were
applied in microwave imaging. A microwave imaging of buried
objects using genetic algorithms (GAs) approaches and the
particle swarm optimization for the reconstruction of microwave
images are given in [13,14], respectively. In the present paper,
we provide a hybrid technique mGA-CG which a micro genetic
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algorithm (mGA) approach is combined with the conjugate
gradient method (CG). The objective of this method is to
accelerate the estimation of relative permittivity profile of a
dielectric cylinder embedded in free space. Another method based
on artificial neural networks (ANNs) was tested for the detection
and localization of the same object. ANN has been widely used in
microwave engineering [15,16]. In our case, measurements of the
scattered field at the observation points and the permittivity of
the object domain represent the inputs and outputs of the
network, respectively. Compared with GA and mGA-CG methods,
the principal advantage of the neural networks is that no
formulation of the direct problem is necessary. The object is
illuminated by a transverse magnetic (TM) polarized plane wave,
samples of the scattered field are obtained on a circle in the
surrounding domain and scatterer cross section is assumed to be
included in a fixed test area.

2. Forward problem formulation

Let us consider two-dimensional (2-D) geometry as shown in
Fig. 1.

The object with cross section O which is infinitely long (along
the z-axis of a cartesian coordinate system) is assumed to be
located in free space medium of dielectric permittivity e0.
The material property of the object is characterized by the
relative complex permittivity (RCP) er,Oðx,yÞ which vary only with
respect to the transverse coordinates (x and y axis). The object is
also considered nonmagnetic that its magnetic permeability be
equal everywhere to m0. It is pointed out that er,Oðx,yÞ is given by
the following expression:

er,Oðx,yÞ ¼ e0rðx,yÞþ j
sðx,yÞ

oe0
, ð1Þ

where o denotes the angular frequency of the incident field. The
object domain is illuminated by a TM incident plane wave (since
the incident electric field is polarized in the z-axis, ~E inc ¼ Einc~z).
The incident electric field is given as follows:

Eincðx,yÞ ¼ expð�K0ðxcosjincþysinjincÞÞ, ð2Þ

jinc and K0 ¼o
ffiffiffiffiffiffiffiffiffiffie0m0
p

denote the incidence angle and the wave
number of the free space, respectively.

Thus the scattering problem can be reduced to two dimen-
sional. The scattered and total electric fields ~Es ¼ Es~z and ~E ¼ E~z,
respectively, are also parallel to the z-axis considering the scalar
nature of the problem. The time dependency has the expð�jotÞ

form. The total electric field represents a solution of the Helmoltz
wave equation below:

r
2Eðx,yÞþK2

0 erðx,yÞEðx,yÞ ¼ 0: ð3Þ

In Eq. (3), erðx,yÞ denotes the relative complex permittivity
distribution in all space:

erðx,yÞ ¼
er,Oðx; yÞ; ðx; yÞAD,

1; ðx; yÞ =2D:

(
ð4Þ

The forward problem consists of computing the scattered field
from the knowledge of permittivity profile and a particular
incident field. While, the tomographic imaging objective is to
determine an unknown permittivity distribution from the
measured scattered fields (data) for a given incident field. Let us
use this equality: ~E ¼ ~Einc þ

~Es , then the scattered electric field ~Es

can be defined as a solution of the following reduced equation:

r
2Esðx,yÞþK2

0 Esðx,yÞ ¼�K2
0 Cðx,yÞEðx,yÞ, ð5Þ

where Cðx,yÞ ¼ ðerðx,yÞ�1Þ denotes the contrast function. Under
these assumptions, when the object is illuminated by a set of V

TM incident fields, the total electric field Ev(x,y), v¼1,y,V,
satisfies the following integral equation, which is also called the
‘‘state equation’’:

Evðx,yÞ ¼ Ev
incðx,yÞþK2

0

ZZ
D

gðx,y,x0,y0ÞCðx0,y0ÞEvðx0,y0Þdx0 dy0ðx,yÞAD:

ð6Þ

In (6), g(x,y,x
0

,y
0

) is the Green’s function in two dimensions

given by: gðx,y,x0,y0Þ ¼ ðj=4ÞHð1Þ0 ðK0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2

q
Þ, which Hð1Þ0 is

the Hankel function of the second kind and zero order. The
measurement domain S is formed by an arrangement of probing
antennas located at M positions ðxm,ymÞ, m¼1,y,M, and sur-
rounding the object domain D. For each excitation of index v, the
scattered electric field Ev

s ðxm,ymÞ satisfies the following relation

representing the ‘‘data equation’’:

Ev
s ðxm,ymÞ ¼ K2

0

ZZ
D

gðxm,ym,x0,y0ÞCðx0,y0ÞEvðx0,y0Þdx0 dy0ðxm,ymÞAS:

ð7Þ

In order to treat the problem numerically, the first step is the
discretization of (6) and (7). Thus, we consider a square
investigation domain D subdivided into N square cells. In the
n-th cell, the total field and dielectric permittivity are considered
constant and equal to the corresponding value of the cell center
denoted by its coordinates (xn,yn). In numerical practice, discrete
versions of the above equations are considered. They are obtained
by means the method of moments (MoM) with pulse-basis and
point matching, which results in partitioning the test domain D

into elementary pixels, small enough in order to consider the
fields and the contrast as constant over each of them. Then (6) and
(7) can be transformed into matrix equations as follows:

Einc ¼ ðI�GDCÞE, ð8Þ

Es ¼ GsCE, ð9Þ

where E and Einc are N�V matrices, their v-th columns vectors
represent the N elements of the total and incident fields,
respectively, on the test domain D correspond to the v-th
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Fig. 1. Geometric configuration of the 2-D scattering problem.

B. Mhamdi et al. / Int. J. Electron. Commun. (AEÜ) 65 (2011) 140–147 141
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