

Contents lists available at ScienceDirect

Waste Management

journal homepage: www.elsevier.com/locate/wasman

Identification and optimization of parameters for the semi-continuous production of garbage enzyme from pre-consumer organic waste by green RP-HPLC method

C. Arun, P. Sivashanmugam *

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India

ARTICLE INFO

Article history: Received 9 March 2015 Revised 5 June 2015 Accepted 7 July 2015 Available online 20 July 2015

Keywords: Organic solid waste Garbage enzyme Monitoring Organic acid RP-HPLC

ABSTRACT

Reuse and management of organic solid waste, reduce the environmental impact on human health and increase the economic status by generating valuable products for current and novel applications. Garbage enzyme is one such product produced from fermentation of organic solid waste and it can be used as liquid fertilizer, antimicrobial agents, treatment of domestic wastewater, municipal and industrial sludge treatment, etc. The semi-continuous production of garbage enzyme in large quantity at minimal time period and at lesser cost is needed to cater for treatment of increasing quantities of industrial waste activated sludge. This necessitates a parameter for monitoring and control for the scaling up of current process on semi-continuous basis. In the present study a RP-HPLC (Reversed Phase-High Performance Liquid Chromatography) method is used for quantification of standard organic acid at optimized condition 30 °C column oven temperature, pH 2.7, and 0.7 ml/min flow rate of the mobile phase (potassium dihydrogen phosphate in water) at 50 mM concentration. The garbage enzyme solution collected in 15, 30, 45, 60, 75 and 90 days were used as sample to determine the concentration of organic acid. Among these, 90th day sample showed the maximum concentration of 78.14 g/l of acetic acid in garbage enzyme, whereas other organic acids concentration got decreased when compare to the 15th day sample. This result confirms that the matured garbage enzyme contains a higher concentration of acetic acid and thus it can be used as a monitoring parameter for semi-continuous production of garbage enzyme in large scale.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Globally pre-consumer type waste generated by food processing industries on a large scale contains 60% of organic matter (Lin et al., 2013). Organic waste is currently a worldwide major issue, its treatment and disposal become more and more important in developing countries. Organic waste poses serious risk to human health and the environment at every stage from generation to transportation and safe disposal (Sinha et al., 2009). On the other hand the emission of greenhouse gases methane and nitrous oxides from their management by composting. In the atmosphere the ability of heat trapping by greenhouse gas differs, if the heat trapping potential is higher, the gas creates a greater impact on climate changes and the environment (Karl et al., 2009). These obviously

become a major environmental, economic and social problem (Gustavsson et al., 2011). In the current society, increasing global population mutually increases the global demand for energy, chemicals and materials. The increasing demands encourage the reuse and management of organic solid waste (Bansal et al., 2012; Chandrasekaran, 2013; Pleissner and Lin, 2013; Zhang et al., 2013). These processes could complement with lower environmental impact strategies and have the potential to generate valuable products for current and novel applications (Zhang et al., 2013; Poeschl et al., 2010). In general organic waste comprised with significant quantities of functionalised molecules like carbohydrates, proteins, triglycerides, fatty acids, phenolic (Pleissner and Lin, 2013; Zhang et al., 2013; Poeschl et al., 2010; Yan et al., 2011; Leung et al., 2010).

In the developing countries, there is gradual increase in waste activated sludge (WAS) produced from the waste water treatment process due to higher industrialization. The WAS need to be stabilized adequately to reduce organic content, pathogen and odour problems before disposal and utilization. Anaerobic digestion is

^{*} Corresponding author.

E-mail addresses: lrcarun@gmail.com (C. Arun), psiva@nitt.edu
(P. Sivashanmugam).

one of the best stabilization processes, but the hydrolysis step is major limitations of this process. It can be overcome by various pre-treatment process (Physical (Beszédes et al., 2012), Chemical (Kim et al., 2007; Kavitha et al., 2014a), biological (Kavitha et al., 2014b; Merrylin et al., 2013)).

The garbage enzyme was produced by the fermentation of waste vegetables, fruits, or its peels along with sugar and water (Prakash, 2011; Oon, 2008). The garbage enzyme can function in four categories: decompose, compose, transform and catalysis (Oon, 2008). It has the property to improve wastewater treatment processes by removal of impurities, harmful sludge and bacteria and promotes recycling of waste back into the earth (Prakash, 2011; Tang and Tong, 2011). Nazim and Meera (2013) produced garbage enzyme for treatment of Synthetic Grey water using 5% and 10% Garbage Enzyme Solution. They also characterized the environmental properties (BOD, COD, MPN, etc.) of garbage enzyme and confirmed that the produced garbage enzyme is acidic in nature.

In our previous work the antimicrobial activity, bio catalytic activity and consequently the stabilization of dairy waste activated sludge using crude garbage enzymes were studied and reported to check whether the garbage enzyme produced from preconsumer is capable of stabilizing the waste activated sludge or not. The result obtained confirmed that garbage enzyme solution has antimicrobial activity, bio catalytic activity and it also has the capability to stabilize the waste activated sludge (Arun and Sivashanmugam, 2015).

Till now the garbage enzyme production is being performed in batch fermentation process for a period of 3 months. The semi-continuous production of garbage enzyme in large quantity in minimal time period and at lesser cost is needed to cater for treatment of increasing quantities of industrial waste activated sludge. This necessitates a parameter for monitoring and control for the scaling up of current process on semi-continuous basis. In many fermentation processes, monitoring of organic acid in the product is used as a major parameter for process control and quality testing.

Various methods like spectrophotometric with and without bio catalyst, electrophoretic and chromatographic methods have been reported for determining organic acid (Mato et al., 2005). The ion exchange column HPLC protocol justifies lower environmental impacts and running costs but the ion exchange column is more expensive compared to C-18 HPLC column. Another common method used to determine organic acid is gas chromatography (GC), but the GC method for the quantification of organic acid was found to be unsuitable because the procedure was very tedious. Kerem et al. (2004), reported that reversed-phase HPLC (RP-HPLC) method was found to be very simple, reliable and stable for the quantification of organic acid among all other the chromatographic methods.

Organic solvents such as acetonitrile and methanol are generally used in RP-HPLC for separation. Kelebek et al. (2009), used sulphuric acid with acetonitrile as solvent to determine the concentration of organic acid in orange juice and organic wine using HPLC method. But these organic solvents are significantly hazardous to human health and very expensive with respect to the disposal of solvents (Wei et al., 2011). Thus, RP-HPLC techniques without using organic solvents are now preferred (Moldoveanu and David, 2012; Nour et al., 2010; Koel and Kaljurand, 2010). The HPLC method using water as the mobile phase is commonly referred as a green HPLC method. Sánchez-Machado et al. (2008) reported the HPLC method for determination of organic acid in fermented shrimp waste using water as the mobile phase with pH = 2.1. Nour et al. (2010) determined the organic acid in citrus fruit using potassium dihydrogen orthophosphate buffer as the mobile phase with pH 2.8. The above cited works were only confined with citrus fruit extracts, fermented shrimp waste, etc. to determine the concentration of organic acid in RP HPLC and till now no attempt has been made to determine organic acid in garbage enzyme solution using RP HPLC method.

In the present work an attempt has been made

- To quantify the organic acid (Acetic, oxalic, citric, malic, and lactic acid) in garbage enzyme solution using potassium dihydrogen orthophosphate buffer as mobile phase using RP-HPLC method.
- Chromatographic parameters like pH, temperature, concentration of the mobile phase and flow rate were optimized.
- The optimized chromatographic environments were used to investigate the concentration of organic acid during the production of garbage enzyme at different time interval.

2. Materials and methods

2.1. Chemicals and reagents

Acetic acid, citric acid, malic acid, lactic acid, oxalic acid, orthophosphate, phosphoric acids and HPLC water were purchased from Merck Ltd. All reagents were of analytical grade and were used without further treatment.

2.2. HPLC equipment

Shimadzu prominence binary gradient HPLC system (Japan) with a LC-20AD pump, SIL-20A HT auto sampler (Shimadzu, Japan), CTO-20AC column oven (Shimadzu, Japan) and a PDA detector (Shimadzu, Japan) were used for the present study. Separations were accomplished using a C18 column (5 µm particle diameter and 120 Å pore diameter, Shimadzu, Japan).

2.3. Organic acid standard preparation

A standard stock solution of 1050 g/l acetic acid, 1 g/l citric acid, 2 g/l malic acid, 0.3 g/l oxalic and 1210 g/l lactic acid was prepared. The stock solution are used to prepare corresponding dilutions using ultrapure water and stored at low temperature (4 $^{\circ}$ C) in dark places.

2.4. Preparation of garbage enzyme samples

About 300 g of organic wastes (Tomato, Cauliflower, and Pineapple, Orange and Mango peels) were mixed with 100 g of molasses (carbon source) and a litre of water in 21 air tight containers. The fermentation was carried out for 3 months in dark at room temperature. The solutions from the container were collected at regular interval of 15 days and centrifuge at 3000 rpm for 30 min .The supernatant was diluted to 1:10 with ultrapure HPLC water and filtered using membrane filter (0.45 μm) before injection into HPLC for the organic acid determination.

2.5. RP-HPLC method optimization

To optimize RP-HPLC condition for determination of the organic acid in the garbage enzyme solution, effects of concentration of the mobile phase, the pH of the mobile phase, temperature of column oven and flow rate of the mobile phase of separation with a constant wavelength (214 nm) were investigated. The experimental designs are shown in Table 1.

The standard curves of 5 organic acids were obtained at proposed optimal condition. With these standard curves as reference,

Download English Version:

https://daneshyari.com/en/article/4471353

Download Persian Version:

https://daneshyari.com/article/4471353

<u>Daneshyari.com</u>