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a b s t r a c t

We consider the problem of collecting waste from sensor equipped underground containers. These sen-
sors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory
routing problem, involves decisions regarding routing and container selection. In more dense networks,
the latter becomes more important. To cope with uncertainty in deposit volumes and with fluctuations
due to daily and seasonal effects, we need an anticipatory policy that balances the workload over time.
We propose a relatively simple heuristic consisting of several tunable parameters depending on the
day of the week. We tune the parameters of this policy using optimal learning techniques combined with
simulation. We illustrate our approach using a real life problem instance of a waste collection company,
located in The Netherlands, and perform experiments on several other instances. For our case study, we
show that costs savings up to 40% are possible by optimizing the parameters.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, there has been a growing interest in
Vendor Managed Inventory (VMI). In VMI, the replenishment deci-
sions are being made by a supplier based on various inventory and
supply chain policies (Angulo et al., 2004). The combined decision
on when to replenish the customers’ inventories, how much prod-
uct to deliver, and in which way to route the vehicles that execute
the delivery, is also known as the Inventory Routing Problem (IRP).
Answering all these questions simultaneously is a challenging task,
considering that the decisions taken at a certain moment in time
for a given planning horizon influence the decisions made later
within or beyond this horizon (Baita et al., 1998). By now, various
methodologies have been developed to cope with this challenge
and to achieve higher service levels for customers, while simulta-
neously lowering the costs for the suppliers.

Accurate information about current and future customers’
inventories and demand is vital for the decisions to be sound dur-
ing the entire planning horizon (Aghezzaf, 2008). However, the
inherent variability in the demand (and thus the inventories)
makes it difficult to have a precise prediction, and hence creates
an additional layer of complexity to the already difficult IRP. The
problem becomes even tougher if we are dealing with companies
serving a large numbers of customers. This typically occurs in
urban areas, where customers are located closely to each other.
Examples include vending machine replenishment (Rusdiansyah

and Tsao, 2005), supermarket replenishment (Gaur and Fisher,
2004), and municipal waste collection (Russell and Igo, 1979).
The latter is also the topic of this paper.

A particular application of the IRP with a large number of cus-
tomers, variability in the demand, and a long planning horizon
(say several weeks), is the Waste Collection Problem (WCP). In
the special case in which the waste collection company plans the
emptying of containers dynamically (as opposed to static or peri-
odic scheduling and routing) and bases this planning on the amount
of waste inside the containers (which can be known through the
uses of sensors in each container), the WCP becomes a special case
of the IRP. The difference is related to reverse flows (the purpose of
visiting a ‘‘customer’’ is collecting rather than delivering some-
thing) and the decision on how much to collect is not relevant since
containers will always be fully emptied. Solution methodologies for
IRPs also work for WCPs as long as they support decisions for uncer-
tain demand (waste deposits) and a large number of customers
(waste containers), which are usual settings for a WCP.

This paper is motivated by a case study at the waste collection
company Twente Milieu, located in The Netherlands. Different
types of municipal waste containers are used in The Netherlands.
The most important types are mini containers (one per household,
have to be put along the side of the road on prespecified days) and
block containers (shared by multiple households). Since 2009,
Twente Milieu also makes use of underground containers, which
are also shared by multiple households, but have a number of
advantages compared to the mini containers and block containers,
see Mes (2012). Initially, these underground containers were
mainly placed at apartment buildings and commercial buildings

http://dx.doi.org/10.1016/j.wasman.2014.05.011
0956-053X/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +31 534894062; fax: +31 534892159.
E-mail address: m.r.k.mes@utwente.nl (M. Mes).

Waste Management 34 (2014) 1564–1576

Contents lists available at ScienceDirect

Waste Management

journal homepage: www.elsevier .com/ locate/wasman

http://crossmark.crossref.org/dialog/?doi=10.1016/j.wasman.2014.05.011&domain=pdf
http://dx.doi.org/10.1016/j.wasman.2014.05.011
mailto:m.r.k.mes@utwente.nl
http://dx.doi.org/10.1016/j.wasman.2014.05.011
http://www.sciencedirect.com/science/journal/0956053X
http://www.elsevier.com/locate/wasman


(e.g., at restaurants), but their use is now extended to all sorts of
living areas. In this paper we focus on the collection from these
underground containers, which are equipped with sensors that
provide insight into the fill levels of containers at any point in time.
The objective of this study is to use this information to efficiently
plan the emptying of underground containers. Given the stochastic
nature of waste deposits, it is difficult to design robust plans for all
possible demand realizations. To solve the problem for a suffi-
ciently long planning horizon, a way of ‘‘learning’’ from historical
inventory levels must be incorporated such that better predictions
can be done for the future.

Taking into account the size of the container network, the
stochastic nature of waste deposits, and the need to use a long
planning horizon, on top of the interrelatedness of the multiple
decisions, it is clear that not all solution approaches for the IRP
are suitable. Modelling the planning decisions and solving the
model for real-life problem settings and instances are challenging
tasks. Exact solutions, such as mathematical programming, are
not suitable to solve larger problem instances (McLeod and
Cherrett, 2008). Additionally, mathematical programming models
usually assume deterministic demands. Stochastic modelling
approaches, such as Stochastic Dynamic Programming and Markov
Decision Processes, also become computationally intractable due
to large state spaces and high-dimensional value functions that
cannot be solved analytically (Kleywegt et al., 2004). For these rea-
sons, different types of heuristic approaches have been proposed in
the literature. In their review of various heuristics for the IRP,
Abdelmaguid et al. (2009) show that these heuristics involve
parameters or settings that influence their performance. Even if
ways of determining the parameters are given, they usually do
not incorporate any form of coping with uncertainty; variability
in demand realizations may thus diminish their performance.

In this paper, our main goal is to develop a fast and parameter-
ized heuristic for solving the IRP for waste collection, together with
a methodology to determine the best parameter settings for our
heuristic. Since the performance and the quality of a particular heu-
ristic heavily depend on choosing the right values of its parameters,
we propose the use of techniques from optimal learning (Powell and
Ryzhov, 2012). This paper makes the following contributions: (i) we
propose a practical and simple heuristic for solving the IRP with
many customers, (ii) we show how simulation optimization can
be used for tuning the parameters of our heuristic in the best way
for a given problem setting, and (iii) we provide insight into the
dependency of the parameters of our heuristic with respect to sev-
eral network characteristics (e.g., density of the container network,
fluctuation in waste deposits, etc.). We illustrate our approach using
the case study at Twente Milieu. This company has implemented
the dynamic collection policy, where underground waste containers
are scheduled to be emptied based on sensor information and by
using the heuristic as presented in this paper.

The paper is organized as follows. In Section 2, we briefly pres-
ent the key points addressed in the scientific literature about the
problem under consideration. In Section 3, we describe our model
and present the assumptions of the IRP for waste collection. Fol-
lowing this, we explain our parameterized heuristic approach for
solving the problem in Section 4. In Section 5, we describe the
way an optimal learning algorithm can be applied to this problem
and specifically to our heuristic. We present the experimental
design and the insights of this study in Section 6. We end with
conclusions in Section 7.

2. Literature

In the Inventory Routing Problem (IRP), three questions have to
be answered: (i) when to visit a customer, (ii) how much product

to deliver during the visit, and (iii) how to route the vehicles
(Campbell and Savelsbergh, 2004). The IRP combines two problems
classes: the Vehicle Routing Problem (VRP) and Vendor Managed
Inventory (VMI). Some IRPs are considered as extensions of the
VRP (Moin and Salhi, 2007). In a VRP, a company limits itself to
receiving customer orders and finding the best way to satisfy and
deliver them. On the other hand, in an IRP, the customer orders
are determined by the company, usually guided by some service
level agreement. This case of customer stocks being replenished
without an explicit customer order is known as VMI. VMI decisions
focus on determining the size and time of replenishment. The com-
bination of VMI and VRP decisions makes the IRP a challenging
problem.

To cope with uncertainty in customer inventories, IRPs are usu-
ally solved repeatedly for a multi-period planning horizon (i.e.,
using rolling horizon procedures). These frequent decisions have
the effect that previous decisions influence current and future
ones, as explained by Baita et al. (1998). Therefore, the length of
the planning horizon has an impact on the way the problem should
be conceptualized and tackled. For a thorough categorization of the
characteristics of dynamic routing and inventory problems, we
refer to Baita et al. (1998) and Kleywegt et al. (2002). Here, we
elaborate on only two of these characteristics: the planning hori-
zon and the uncertainties in demand.

The planning period of IRP studies vary from a single period to
an infinite horizon. Nevertheless, most researchers agree that the
interrelatedness of decisions through time has an impact on the
long-term planning objective. Since early studies of IRPs, authors
have developed ways of measuring the long-term effect when
using single period models. For example, Dror and Ball (1987) solve
a series of single period problems, model the long-term effect
through the use of penalties, incentives, and expected changes in
costs, and optimize the output of the single period problems in
accordance to the long-term objectives. Chien et al. (1989) also
tackle the IRP long-term decision effects with single period
problems, with the difference that they pass inventory and cost
information from one period to the next one, and therefore make
decisions taking into account information from other periods.
The problem has also been studied the other way around: a long-
horizon solution is developed first and then short-term plans are
derived from it. For example, Campbell and Savelsbergh (2004)
develop a two phase rolling horizon approach. First, a monthly plan
is generated, which is then split into short-term problems for daily
scheduling. The plan is implemented only for the first few days of
the planned month, after which a new plan will be generated. A
similar rolling horizon approach is developed by Jaillet et al.
(2000), who build a two weeks schedule but only the first week
is implemented. Just as these examples, most of the solving
approaches in the literature typically decompose the entire IRP
into short term problems and use some method to account for
the long term objective.

The majority of models developed for multiple-period IRPs
assume deterministic demand as seen in Andersson et al. (2010).
However, it is often desirable that a planning system is able to cope
with stochastic processes, especially when considering that the dif-
ferent realizations of real-life demand might prevent the plan of
being executed as desired (Ronen, 2002). According to the classifi-
cation scheme of Andersson et al. (2010), our problem can be char-
acterized as a Dynamic and Stochastic Inventory–Routing Problem
(DSIRP), with a finite horizon, one-to-many deliveries, multiple
customer visits per route, order-up-to level inventory policy, using
back-ordering, with a fleet of multiple homogeneous trucks. In the
DSIRP, customer demand is known only in a probabilistic sense and
revealed over time. Frequently, stochastic IRPs are modelled as
Markov Decision Processes (Kleywegt et al., 2002; Adelman,
2004; Hvattum et al., 2009). However, this approach might easily
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