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a b s t r a c t

A new and efficient improved maximum scatter difference (MSD) model is introduced in this paper. The
main weakness of the MSD model is that the class mean vector is constructed via class sample average
when the within-class and between-class scatter matrices are formed. For a few of given samples with
non-ideal conditions (e.g., variations of expression, pose and noisy environment), the assessment result
is very weak by using the class sample average. That is because there will be some outliers in these sam-
ples. Therefore, the recognition performance of maximum scatter difference criterion will decline signif-
icantly. To solve the problem, in the traditional MSD model, we use within-class maximum–minimum–
median average vector to construct within-class scatter matrix (Sw) and between-class scatter matrix (Sb)
instead of within-class mean vector. The experimental results show that an improvement of the MSD
model is possible with the proposed technique in ORL and Yale face database recognition problems.

� 2016 Elsevier GmbH. All rights reserved.

1. Introduction

In recent years, face recognition approach plays an important
role in most of the real world applications such as access control,
security surveillance and card identification. In controlled condi-
tions, face recognition technique has made much progress such
as [1–5]. As we all know, in the face recognition field, two popular
methods are Eigenfaces approach [6] and linear discriminant anal-
ysis (LDA) approach [7]. The main idea of the Eigenfaces approach
is to generate a set of orthonormal projections by maximizing the
covariance over all the samples. So, it is an effective method to rep-
resent each face image. However, this approach cannot work well
due to the fact that the classification information cannot be fully
used in the classification process. The main idea of LDA is trying
to find optimal projection vectors via maximizing the ratio
between Sb and Sw (see the Eq. (5)). We all know the fact that
LDA is better than Eigenfaces in face recognition performance.
But, LDA cannot be used directly in most of the world face recogni-
tion task when the Sw is singular. Therefore, many researchers have
made great efforts in developing advanced techniques for solving
the problem [8–12]. However, the biggest shortcoming of all these
approaches is that we must calculate the inverse matrix of Sw.

For the above mentioned weakness, a maximum scatter differ-
ence (MSD) criterion was proposed by Song et al. [13]. The main
idea and advantage of MSD are that the difference of both Sb and
Sw as discriminant criterion and the inverse matrix of Sw need
not be calculated, respectively. However, in the traditional MSD
model, the class mean vector is estimated in terms of the class
average. In face recognition, for a few of given samples, the assess-
ment result is very weak by using the class sample average, espe-
cially when there are outliers in the sample set with noise and
corrosion [14]. For this problem, many researchers proposed corre-
sponding methods [15,16,18]. Li proposed a median MSD-based
(MMSD) method [15], which adopts the within-class median vec-
tor to estimate the class mean vector in the MSD model for face
recognition problem. A more effective null subspace discriminant
(MN(Sw)) method [16] by Gao proposed to handle the face recog-
nition problem. MN(Sw) is a two stage linear discriminant analysis
learning approach, which first transforms the original space by
employing a basis of Sw null space, and then in the transformed
space the maximum of Sb is pursued, where in the second stage,
within-class median vector is used in the LDA model.

Actually, face recognition is a complex pattern classification
task in that face images involve many variations (e.g., facial
expression, pose and the affection of illumination is most serious
in the real world). The variations between the images of the same
face due to illumination and viewing direction are almost larger
than the image variations due to a change in face identity [16].
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Therefore, all these non-ideal conditions will produce some out-
liers in the training set. However, for a practical face recognition
task, only a few of the image samples are available for training
each class, so it is difficult to give an accurate estimate of the
class mean vector in terms of the class sample average. The inac-
curate estimate of the class mean vector must have a negative
effect on the robustness of the MSD model under the non-ideal
conditions. To solve the disadvantage, the within-class maxi-
mum–minimum–median average vector is used to estimate the
class mean vector in the MSD model. So, the experimental results
will show the proposed MSD model is more robust than the exist-
ing MSD model.

The rest of this paper is organized as follows. The existing MSD
model is briefly introduced in Section 2. Section 3 introduces the
concept of maximum–minimum–median average. Our proposed
approach is introduced in Section 4. Finally, the experiment results
and conclusions are drawn in Sections 5 and 6, respectively.

2. Maximum scatter difference (MSD) criterion

In this section, we first introduce some important notations
used in this paper. Suppose there are c known pattern classes,
the Sb and Sw can be described as Eqs. (1) and (2), respectively.

Sb ¼ 1
N

Xc

i¼1

Niðmi �m0Þðmi �m0ÞT ; ð1Þ

Sw ¼ 1
N

Xc

i¼1

XNi

j¼1

ðx j
i �miÞðx j

i �miÞ
T
; ð2Þ

where Ni is the number of training samples in the ith class and N is

the total number of training samples and N ¼ Pc
i¼1Ni � x j

i denotes
the jth training sample in class i, the mean vector of training sam-
ples in class i is denoted by mi and the mean vector of all training

samples is m0 ¼ ð1=NÞPN
i¼1xi. From the classical LDA method, the

samples can be separated easily if the ratio of the between-class
scatter and the within-class scatter is maximized.

In this paper, a maximum scatter difference based discriminant
criterion [13] is defined as follows:

JðgÞ ¼ gTSbg� b � gTSwg ¼ gTðSb � b � SwÞg; ð3Þ
where b is a non-negative constant to balance Sb and Sw. In order to
contract the value field of b to a small area, Li proposed a modified
version of MSD model as follows [17]:

JðgÞ ¼ gTðaSb � ð1� aÞSwÞg; ð4Þ
where 0 < a < 1. From the Eq. (4), we can see that it is more conve-
nient to be used than original MSD.

By the property of the extreme value of generalized Rayleigh
quotient, the optimal solution set maximizing (4) are the eigenvec-
tors g1; g2; . . . gk corresponding to the first k largest eigenvalues
k1; k2; . . . kk, where k1 P k2 P � � � P kk. So the optimal projection
matrix is formed by G ¼ ½g1; g2; . . . ; gk�. According to the analysis
above, for a given sample x, its features can be obtained by trans-
formation y ¼ GTx.

When comparing the maximum scatter difference criterion
with the classical LDA criterion (viz. Fisher discriminant criterion,
Eq. (5)), we can easily find that the former avoids calculation of
the inverse within-class scatter, as S�1

w Sb is substituted by
Sb � b � Sw, this cannot only be made computationally more effi-
cient but also avoids the singular problem of the within-class scat-
ter [15].

JðgÞ ¼ gTSbg
gTSwg

: ð5Þ

3. Concept of maximum–minimum–median average

In this section, firstly, we briefly review the concept of median
by [14] proposed to handle face feature recognition problems.
Median is the middle value in a distribution for a finite list of num-
bers, above and below which lie an equal number of values. In
mathematics, median refers to the number that is located at the
middle of a set of numbers that have been arranged in a descend-
ing order. In addition, in cases where there are two values in the
middle then the mean of these two values is picked as the median.
However, maximum–minimum–median average (A3M) is the
mean value of sum of maximum, minimum and median in a distri-
bution for a finite list of numbers, except for these outliers. For the
choice of A3M, we give two simple examples as follows:

Case 1. The number of input data values is odd, for Example 9,
we have:

]1 = {4.36, 4.05, 12, 4.15, 2, 4.24, 4.47, 4.68, 4.55}.
Ordered ]1 = {2, 4.05, 4.15, 4.24, 4.36, 4.47, 4.55, 4.68, 12}.
A3M-operated ]1 = {4.05, 4.15, 4.24, 4.36, 4.47, 4.55, 4.68}.
Median Ordered ]1 ¼ 4:36, Average Ordered ]1 ¼ 4:944,
A3M A3M-operated

]1 ¼ maxðA3M�operated]1ÞþminðA3M�operated]1ÞþmedianðA3M�operated]1Þ
3 � 4:363.

Case 2. The number of input data values is even, for Example 10,
we have:

]2 = {4.36, 4.05, 12, 4.15, 2, 4.24, 4.47, 4.68, 4.55, 4.75}.
Ordered ]2 = {2, 4.05, 4.15, 4.24, 4.36, 4.47, 4.55, 4.68, 4.75, 12}.
A3M-operated ]2 = {4.05, 4.15, 4.24, 4.36, 4.47, 4.55, 4.68, 4.75}.
Median Ordered ]2 ¼ 4:36þ4:47

2 ¼ 4:415, Average Ordered
]2 = 4.925,

A3M A3M-operated

]2 ¼ maxðA3M�operated]2ÞþminðA3M�operated]2ÞþmedianðA3M�operated]2Þ
3 � 4:405.

Like the sample average and sample median, the maximum–
minimum–median average (A3M) can also be used as an estimator
of the central tendency such as the population mean. And, it is gen-
erally considered that the A3M is a more robust estimator of the
central tendency than the sample average and sample median for
data with outliers. From the above examples, we can also see that
the A3M does work better than the average and median when the
outliers ‘‘2” and ‘‘12” exist in the data sets.

For the calculation problem of median vector, we can adopt the
following procedure [14–16]. Given a random sequence of n-
dimensional volume vectors W1;W2; . . . ;Wq, the following data
matrix can be obtained.

W ¼ ðW1;W2; . . . ;WqÞ ¼
w11 � � � w1q

..

. ..
. ..

.

wn1 � � � wnq

0
BB@

1
CCA: ð6Þ

Therefore, the median vector of W1;W2; . . . ;Wq can be defined as

M ¼ ðM1;M2; . . . ;MnÞT , where Mi is the median of elements on the
ith row of the input data matrix W. Specifically, the symbol
Median(�) denotes the median operator of a set numbers, that is
Mi ¼ Medianðfwi1;wi2; . . . ;wiqgÞ.

In addition, we can adopt the following procedure to calculate
the maximum–minimum–median average (A3M) vector. Block
diagram of A3M calculation is shown in Fig. 1. First a 3� 3 window
is run across the noisy or corroded images from left to right and top
to bottom. The detection of corrupted or uncorrupted pixel is gov-
erned by checking whether the central pixel value of the selected
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