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a  b  s  t  r  a  c  t

To  date,  only  under  restrictive  assumptions  can  we  derive  closed-form  expressions  for  the  fields  generated
by  an electrically  small  horizontal  wire  antenna  situated  on a planar  conducting  soil.  Such assumptions
limit  the  validity  of the derived  formulas  to  specified  frequency  ranges,  or to  the  case  of highly-conducting
material  media.  The  purpose  of  this  work  is to  relax  all the constraints  underlying  the  derivation  of
the  previously  published  solutions  to  this  half-space  problem,  and  develop  an  analytical  technique  that
allows  to  reduce  the integral  representations  for  the field  components  generated  by  the  dipole  source  to
a well-known  elementary  contour  integral,  whose  evaluation  is  straightforward.  Numerical  results  are
presented  to  show  the  advantages  of the  obtained  explicit  formulas,  which  are  valid  regardless  of  the
operating  frequency,  over  the  previous  solutions.
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1. Introduction

Radiation from electrically small straight wire antennas placed
above a flat, finitely conducting, homogeneous soil has been
intensively investigated by many researchers beginning with Som-
merfeld [1–16]. This is because the study has many practical
applications, especially in the areas of radio communication and
remote sensing [2–4,6,7,12–16]. Even though the work by Som-
merfeld led to exact frequency-domain integral representations for
the EM field components in and above the lossy medium, usage of
the obtained expressions has revealed to be impractical, as numer-
ical integration is made difficult by the highly oscillatory nature of
the integrands. This is the reason why most scientists addressed
the problem of performing analytical integration, after introduc-
ing restrictive assumptions aimed at making the field integrals
tractable. Examples of approximate analytical solutions are the
expressions proposed by Moore and Blair [2], Baños [3], Wait [5],
and Bannister [6], which have been derived under the assumption
that the ratio between the wavenumbers in free-space (k0) and in
the lossy medium (k1) is far less than unity. The main drawback
of these contributions is that each of them is valid only in a pre-
scribed portion of the space surrounding the antenna (that is the
near-, intermediate-, or far-field region).

In the nineties, King [7–10] was the first to derive a unique set of
expressions, valid in a wide frequency range, for the time-harmonic
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fields of an electric type source in the presence of a plane interface
between air and ground. The only disadvantage of King’s formu-
lation resides in that it is still subject to a condition on the ratio
between the wavenumbers in free-space and in the conducting
medium (namely k2

0/|k2
1| � 1), which cannot be met if the conduc-

tivity of the medium is low [5,17,18].
The present paper describes an analytical procedure that per-

mits to derive rigorous expressions for the radial distributions
of the EM field components of a horizontal electric dipole (HED)
placed on a homogeneous soil. The procedure simply consists
of casting the integral representations for the fields into forms
involving only a well-known elementary contour integral, once
the non-oscillating parts of the integrands are replaced with fast-
convergent sequences of rational functions. Since the procedure
does not require satisfaction of any condition, the obtained series
representations for the fields are valid without restrictions on the
operating frequency as well as the electromagnetic parameters of
the material half-space.

The results originating from using the new analytical expres-
sions agree well with the data generated by finite difference time
domain (FDTD) simulations [19]. Conversely, disagreement with
the outcomes provided by King’s approach is observed when the
skin depth in the medium is not negligible with respect to the
source-receiver distance, that is at low frequencies, or when enter-
ing the far-field zone.

2. Theory

Consider a y-directed HED of moment pejωt lying on the surface
of a flat, homogeneous, isotropic and linear lossy medium. The EM
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Fig. 1. Sketch of a horizontal electric dipole on a homogeneous lossy medium.

parameters of the medium are as depicted in Fig. 1, and a cylindrical
coordinate system (�, ϕ, z) is introduced. The EM field components
produced by the dipole at the air side of the air-medium interface
may  be expressed in compact form as [1]
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where the subscript “0” denotes calculation at z = 0+, and
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are the y- and z-components of the electric Hertz vector generated
in the air-space, being J0(·) the zeroth-order Bessel function, and

knz =
√

k2
n − 	2, Im[knz] < 0, (9)

k2
n = ω2�0�n − jω�0�n, 
 = k0/k1. (10)

The scope of the present paper is to exactly evaluate the EM field
components (1)–(6). First, substituting the identities
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Next, using (7), (14) and (15) into (1)–(6) makes it possible to
obtain

E� = −ω�0p sin ϕ

2�

(
1

k2
1

U0 + W0

)
,

H� = jp cos ϕ

2�

(
1

	2
01�

V ′
0 + W ′

0

)
,

Eϕ = −ω�0p cos ϕ

2�

(
1

k2
1�

V0 + W0

)
,

Hϕ = − jp sin ϕ

2�

(
1

	2
01

U ′
0 + W ′

0

)
,

Ez = ω�0p sin ϕ

2�k2
0

V ′
0, Hz = − jp cos ϕ

2�

∂W0

∂�
,  (16)

with

U =
∫ ∞

0

e−jk0zz

k0z + 
2k1z

[
−	2J0(	�) + 	

�
J1(	�)

]
	d	, (17)

V = −
∫ ∞

0

e−jk0zz

k0z + 
2k1z
J1(	�)	2d	, (18)

W =
∫ ∞

0

e−jk0zz

k0z + k1z
J0(	�)	d	, (19)

and

	01 = − k0√
1 + 
2

, (20)

and where the subscript “0” and the prime denote, respectively,
calculation at z = 0+ and differentiation with respect to z. Explicit
expressions for W0 and W ′

0 are tabulated in literature. Applying [5,
No. 73] leads, straightforwardly, to
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being I0(·) and K0(·) the zeroth-order modified Bessel functions of
the first and second kind, respectively, and
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On the other hand, the integrals U0, V0, U ′
0 and V ′

0 may  be
calculated through a rigorous analytical approach. Use of [21,
3.2.62–3.2.68] allows to express (17), in the limit as z → 0, as
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