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a  b  s  t  r  a  c  t

Feature  point  matching  is  a critical  step  in  feature  based  image  registration.  For  remote  sensing  images,
scale  invariant  feature  transform  (SIFT)  feature  matching  is often  affected  by similar  descriptors  and  there
are mismatches.  To  improve  the  quality  of  feature  matching  and  image  registration,  we propose  to use
spatial  relationship  along  with  the  SIFT  descriptor  for  registration.  Firstly,  initial  matches  are  obtained
based  on  distances  between  SIFT  feature  descriptors.  Secondly,  the  spatial  relationship  of  matched  points
is encoded  by kernel  partial  least  squares  (KPLS).  By  analyzing  the  collinearity  of  the  KPLS  features  from
coarse  to fine,  false  matches  are  indicated.  Finally,  correct  matches  are  used  to  realize  accurate  registra-
tion.  Experimental  results  show  an  overall  significant  reduction  of  the  mismatches  while  maintaining
a  high  rate  of correct  matches.  Compared  with  several  other  feature  matching  methods,  the  proposed
method  provides  comparable  or better  results.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

For the past few decades, image registration is involved widely
in many applications including image mosaic, change detection,
image fusion, cartography, etc. [1]. The aim of image registration is
to find the optimized transformation between the reference and
sensed images, which differ in certain aspects, e.g., translation,
scaling, rotation, and affine, but essentially contain overlapping
scenes. The feature based registration methods consist of five
steps: Preprocessing, feature detection, feature matching, trans-
form model estimation, and resampling [2]. Feature detection and
feature matching are two key steps among these operations. Some
sophisticated feature detection methods have been applied suc-
cessfully, such as SIFT [3], speeded up robust features (SURF) [4]
and salient image disks (SID) [5,6]. However, because there are
regions with similar intensity distribution in the reference and
sensed images, the local descriptor based matching process often
results in many mismatches which have negative effect on the esti-
mation of transform model.

To address the issue, the robust feature matching methods with
the ability of outliers rejection were researched in recent years.
For SIFT based registration, Euclidean distance ratio filter (EDRF)
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[3] is often used to remove unreliable matches. EDRF excludes
an unreliable match if the Euclidean distance ratio of closest to
second-closest neighbors is less than a threshold. However, there
are many mismatches if the threshold is high and many correct
matches are excluded if the threshold is low. So Li et al. proposed
scale-orientation joint restriction criteria to achieve robust feature
matching [7]. They used the joint distance ratio filter to remove mis-
matches. The joint distance ratio filter rejects outliers according to
the distance ratio between the first and second nearest-neighbors
in the sense of joint distance that takes the scale and orienta-
tion information of SIFT key points into consideration. Similarly,
a convenient and effective mode-seeking (MS) algorithm which
also exploits the scale, orientation, and position information of SIFT
features was  presented in [8]. Hasan et al. proposed a two-step
procedure to improve SIFT-based matching by taking advantage
of neighborhood information [9]. They used EDRF and Random
Sample Consensus (RANSAC) [10] to find primary matched feature
points in the first step. Then EDRF is used in the neighborhoods
of the primary matched feature points to find more secondary
matched feature points in the second step.

Another way  to overcome the problem is to combine the local
descriptor based matching and the structure based matching. The
structure based matching methods utilize the spatial relationship
between feature points to establish the matching. For instance,
the graph matching methods have been extensively used for
locating correspondences between features [11–13] in computer
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vision problems. Especially, Wang et al. discussed the relationship
between graph matching and kernel principal component analysis
(KPCA) [12]. From the perspective of KPCA, applying a similarity
function to the original data set is equivalent to the process of
using a kernel function to map  the data into a higher, possibly infi-
nite dimensional space. More recently, some robust point matching
methods that considered the structure information have been pro-
posed for computer vision and remote sensing image registration.
Aguilar et al. [14] proposed a graph transformation matching (GTM)
method which compares adjacent matrices of the nearest-neighbor
graphs emerging from candidate matches to remove outliers. Liu
et al. [15] used the spatial order of adjacent points to construct
structure descriptors for feature points and determine candidate
outliers. Similarly, Zhang et al. [16] presented a structure descriptor
based on the triangle-area representation of the K nearest neigh-
bors to determine the candidate outliers. They both used the change
of the root mean square error (RMSE) before and after removing
a candidate outlier to determine the true outliers. Shi et al. [17]
make use of improved shape context in point structure description
and GTM for exact matching. Yan et al. [18] proposed a false match
rejection strategy based on the collinearity of the first pair of kernel
canonical correlation analysis (KCCA) features. However, the above
mentioned methods tend to obtain higher accuracy at the cost of
reserving fewer matches. This leads to the removal of high quality
matches, which suppresses the registration performance.

To reserve more high quality matches, RANSAC [10] is a classic
and effective method to estimate the transformation parame-
ters and establish correspondences, and it has been widely used
in remote sensing image registration [19,20]. RANSAC is a non-
deterministic method that it produces a reasonable result only with
a certain probability. More iterations are needed to increase the
probability. To reduce the randomness of RANSAC and keep more
high quality matches, Moisan and Stival proposed Optimized Ran-
dom Sampling Algorithm (ORSA) [21] and applied it to SIFT based
image registration [22]. ORSA can find more correct matches than
RANSAC with low randomness.

In this paper, a coarse to fine mismatches removal method based
on KPLS is proposed for remote sensing image registration under
the KPCA view of graph matching [12] and the collinearity property
of KPLS features. The method is deterministic without randomness
and can keep many high quality matches favorable to image reg-
istration. Its rationale is to reduce mismatches caused by similar
descriptors with the help of the spatial relationship among match-
ing features. By analyzing the collinearity of the KPLS features,
one can decide whether there are outliers in the current match-
ing with an acceptable tolerance. The rest of this paper is organized
as follows: Section 2 reviews the related work of KPLS. The out-
liers removal strategy proposed is drawn in Section 3. Experiments
and analysis aiming at evaluating the performance of the proposed
method are detailed in Section 4, and conclusions are drawn in
Section 5.

2. A review of kernel partial least squares technique

The partial least squares (PLS) method, which was initially
developed by Wold et al. [23], has been a tremendously success-
ful method for data analysis in the chemometrics and chemical
industries [24]. Considering two centered multivariate random vec-
tors in paired form (x, y) where x ∈ Rd1 and y ∈ Rd2 , PLS focuses
on studying the covariance between the two parts live in different
spaces. Suppose that X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn) are
n observations of x and y respectively, Mc = In − (1/n)1n1T

n is the
centering matrix where In ∈ Rn×n is an identity matrix and 1n = (1,
1, · · · , 1)T ∈ Rn is a column vector. The covariance matrix between
x and y could be estimated by Cxy = (1/n)XMcMcYT. The aim of PLS

is to find two  directions u ∈ Rd1 and v ∈ Rd2 , such that the covari-
ance of the two  projections sx = uT(x − �x) and ty = vT(y − �y) are
maximized, that is

max
u,v
cov(sx, ty) = max

u,v
uTCxyv,

s.t. uTu = vTv = 1.
(1)

Then u and v are the left and right singular vectors of Cxy,
respectively, according to the Lagrangian multiplier method. The
directions of maximal covariance are given by all the singular vec-
tors of Cxy according to [25].

KPLS is the nonlinear extension of PLS using the “kernel trick”
and PLS is in fact a special case of KPLS with linear kernel.
Let �1 = (�1(x1), �1(x2), · · · , �1(xn)) and �2 = (�2(y1), �2(y2), · · · ,
�2(yn)) denote the corresponding images of the data matrices X
and Y in Hilbert space. Their kernel matrices are KX and KY, where
the elements are computed by the kernel function

KX(i, j) = kx(xi, xj) = 〈�1(xi), �1(xj)〉, (2)

KY(i, j) = ky(yi, yj) = 〈�2(yi), �2(yj)〉, (3)

with 1 ≤ i, j ≤ n. Denote �̄1 = �1Mc and �̄2 = �2Mc are the cen-
tered version of �1 and �2, respectively. Then the corresponding
kernel matrices become K̄X = McKXMc and K̄Y = McKYMc . Suppose
u and v can be linearly expressed by �1 and �2, that is u = �̄1� and
v = �̄2�, the optimization problem of Eq. (1) could be reformulated
as

max
˛,ˇ

�TK̄XK̄Y�,

s.t.�TK̄X� = 1, �TK̄Y� = 1.
(4)

According to the Lagrangian multiplier method, � and � are the
eigenvectors of the generalized eigenvalue problem(

0 K̄XK̄Y

K̄YK̄X 0

)(
�

�

)
= �

(
K̄X 0

0 K̄Y

)(
�

�

)
. (5)

Suppose �x and �y are the mean vectors of �1 and �2, respec-
tively. Once the coefficients � and � are determined by (5), given
any x and y, the projections are computed as

sx = 〈�1(x) − �x, u〉 = 〈�1(x) − �x, �1�〉 = k̄x�, (6)

ty = 〈�2(y) − �y, v〉 = 〈�2(y) − �y, �2�〉 = k̄y�, (7)

where k̄x and k̄y are the rows of K̄X and K̄Y corresponding to
�1(x) − �x and �2(y) − �y, respectively. A linear regression model
could be estimated based on the paired point sets {(si, ti), i = 1, 2,
· · · , n}. The projections {(si, ti), i = 1, 2, · · · , n} are called the KPLS
features.

3. Mismatches removal method based on KPLS

Let X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn) be the position vec-
tors of one-to-one correspondence pairs of matching. �1 = (�1(x1),
�1(x2), · · · , �1(xn)) and �2 = (�2(y1), �2(y2), · · · , �2(yn)) denote their
corresponding images in Hilbert space. At first (si, ti), i = 1, 2, · · · , n
should be computed. However, because K̄X and K̄Y are often sin-
gular, Eq. (5) is not used but the KPCA dimensionality reduction
is carried out on �1 and �2 to reduce the singularity alterna-
tively. Suppose the dimensions of �1 and �2 are reduced to r and
their KPCA representations are �1 = ( 1(x1),  1(x2), · · · ,  1(xn))
and �2 = ( 2(y1),  2(y2), · · · ,  2(yn)), respectively. In the ideal case
that r = n, using the KPCA representations and Eq. (1) to calculate
(si, ti), i = 1, 2, · · · , n is the same as KPLS because KPCA is an ortho-
gonal transformation in Hilbert space. When r < n, the method gives
the approximate solution. KPCA preprocessing is in fact structure
encoding according to [12].
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