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This paper  presents  new  convolution  and correlation  theorems  in  the  OFRFT  domain.  The  authors  also
discuss  the  design  method  of  multiplicative  filter  for bandlimited  signals  for OFRFT  by  convolution  in
time  domain  based  on fast  Fourier  transform  (FFT)  as  well  as  in  OFRFT  domain.  Moreover,  with  the  help
of simulation,  the effect  of time-shifting  and  frequency-modulation  parameters  is shown  in  mapping  one
shape  of an  area  to the  same  shape  of another  area.
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1. Introduction

The offset fractional Fourier transform (OFRFT) [1,2] is similar to original fractional Fourier transform (FRFT) except for the presence of
two extra parameters m and n, which corresponds to time (space) shifting and frequency-modulation respectively. It is a useful mathe-
matical tool and is widely used for spectrum analysis, signal processing and optical system analysis. It is more flexible than FRFT for its two
extra parameters. Well-known transforms such as the Fourier transform (FT) [3–5], the offset FT [1,2], the FRFT [6–12], time-shifting and
scaling, frequency-modulation and others can be seen as the special cases of the OFRFT. Thus, by developing convolution and correlation
theorems for OFRFT, unified convolution and correlation theorems for all of the above mentioned transforms are obtained. Convolution
and correlation operations are fundamental in the theory of linear time-invariant (LTI) system [10,13]. The output of any continuous time
LTI system is found via the convolution of the input signal with the system impulse response. In other words, Fourier transform of convo-
lution of two signals is the point wise product of Fourier transform of the respective signals. Correlation, which is similar to convolution, is
another important operation in signal processing, as well as in optics, in pattern recognition, especially in detection applications [14–16].
The correlation of two functions is no more than their convolution after one of the two functions has been axis-reversed [17]. Convolution
and correlation operations for FRFT have been proposed some years ago [17–31]. However, convolution and correlation operations for
OFRFT still yet remain unknown. To be specific, the convolution theorem of the FT for the signals f(t) and g(t) with associated FTs, F(u) and
G(u), respectively is given by:

f (t) ⊗ g(t)
FT↔F(u)G(u) (1)

where ‘⊗’ denotes the conventional convolution operation i.e.

f (t) ⊗ g(t) = 1√
2�

∫ ∞

−∞
f (�) g(t − �) d� (2)
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This theorem elaborates a powerful result that the convolution of two  signals in time domain leads to simple multiplication of their FTs in
the frequency domain. The convolution theorem for the FRFT given in [20] lacks the relation given by (1), and the result from convolution
operation is given by,

f (t) ⊗ g(t)
FRFT↔ |csc˛|√

2�
exp

[
j

(
u2

2

)
cot ˛

]
×

∫ ∞

−∞
X˛(v) exp

(
−j

v2

2
tan ˛

)
g [(u − v) sec ˛] dv (3)

where, X˛ denotes the FRFT of the signal f(t). In 1998, Zayed [21] and in 2006, Deng et al. [22], proposed different definitions of convolution
theorem in FRFT domain and these required three chirp multiplications to evaluate the defined convolution integral. The documented
convolution operation is defined by

f (t) ⊗ g(t)
FRFT↔ exp

(
− j

2
u2 cot ˛

)
X˛(u)Y˛(u) (4)

After three years in 2009, Wei  et al. [23] derived a new expression for convolution theorem in FRFT domain but the generalized convolution
operation defined in time domain is not only dependent on time variable but it also depends on transform domain variable ‘u’ in which it
has to be transformed. The defined convolution operation is given by∫ ∞

−∞
x(�)y(t��)d�

FRFT↔ X˛(u)Y˛(u) (5)

where, y(t��) defines a �-generalized translation of signal y(t). Although the convolution theorems derived by Wei  et al. [25] and Shi et al.
[28,29] results in FT conversion at  ̨ = �/2 but the multiplicative filter in FRFT domain is not realizable due to the presence of FT in the
transform domain. Finally, Shi et al. [30,31] proposed generalized convolution theorems for FRFT and LCT in the year 2012 in which the
convolution theorems derived independently in the literature [21,28,22,24,27] are the special cases of these generalized theorems. Although
the results of the convolution theorem derived in [27] are consistently matching with the results of the proposed convolution theorem,
but in the rest part of the paper, additional to derived results of the convolution theorem, the authors have derived the corresponding
product theorem, correlation theorems as well as presented the simulation comparison. Moreover, the authors also have proved that
computational complexity of the multiplicative filter in OFRFT domain with convolution in time domain that can be reduced to the
computational complexity of the FFT as well as an application of multiplicative filtering in OFRFT domain is also presented. Moreover, the
convolution and correlation theorems derived in [24,26] results in FT conversion at  ̨ = �/2 as well as are expressible by a one dimensional
integral and easy to implement. To validate the results of the proposed theorems, a simulation comparison is tried to establish between
them. The rest of the paper is organized as follows: Section 2 gives the brief review to the OFRFT and its special cases. Convolution and
correlation theorems for OFRFT are derived in Sections 3 and 4. In Section 5, a practical method to achieve the multiplicative filtering in the
time domain is proposed based on the model of multiplicative filtering in the OFRFT domain as well as with the help of examples, results
of filtering the signal in OFRFT domain using the proposed theorems are also presented. Simulation results and the effect of time-shifting
and frequency-modulation parameters are presented in Section 6 and finally the conclusion is given in Section 7.

2. The offset FRFT

The OFRFT allows shifting/translation, rotation and squeezing of a signal to fit within a fixed window as compared to only rotation in
case of FRFT. The integral form of one-dimensional OFRFT with (˛, m,  n) parameters of a signal f(t) is defined [1] as:

O(˛,m,n)
F (f (t))(u) = F(u) =

√
1 − j cot ˛

2�

∫ +∞

−∞
f (t)K(˛,m,n)(t, u)dt (6)

where, parameters (˛, m, n) are real numbers and  ̨ = a�/2 is the rotation angle. a is the order of the OFRFT, when a ∈ [0, 1], then  ̨ ∈[
0, �/2

]
and a is not equal to multiples of 2. The term K(˛,m,n)(u, t) represents the integral kernel and is given by

K(˛,m,n)(t, u) = KA exp
[

j

2

{(
u2 + t2

)
cot  ̨ + 2t(m − u)csc  ̨ + 2u(n − m cot ˛)

}]
(7)

where, KA = exp
(

j
2 m2 cot ˛

)
. The integral form of inverse operation of the OFRFT with parameters (˛, m,  n) is given by

f (t) =
√

(j cot  ̨ − 1)
2�

∫ +∞

−∞
F(u) K∗

(˛,m,n)(t, u)du (8)

where K∗
(˛,m,n)(t, u) indicates the complex conjugate of the integral kernel. The two basic properties of OFRFT are the additivity and

reversibility properties [1].

Property 1. Additivity property

O(˛2,m2,n2)
F

[
O(˛1,m1,n1)

F f (t)
]

= exp(jϕ)O(˛1+˛2,m3,n3)
F [f (t)] (9)

where

m3 = m2 + m1 cos ˛1 + n1 sin ˛1 (10)

n3 = n2 − m1 sin ˛1 + n1 cos ˛1 (11)

ϕ = sin(2˛2)
4

(
m2

1 − n2
1

)
+ m1n1sin2˛2 + (m1 sin ˛2 − n1 cos ˛2)m2 (12)
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