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a  b  s  t  r  a  c  t

In graph  embedding  based  learning  algorithms,  how  to  construct  the  local  neighborhood  graphs  in appli-
cations  is a difficult  but important  problem.  In this  paper,  we  propose  a  novel  supervised  subspace
learning  method  called  local  similarity  preserving  projections  (LSPP)  for linear  dimensionality  reduc-
tion  (DR). LSPP  seeks  to project  the  original  high-dimensional  data  into  a  subspace,  which  preserves
the  local  neighborhood  structure  of  the data  in  a  certain  sense.  Compared  with  most  existing  DR  algo-
rithms,  such  as locality  preserving  projections  (LPP)  which  is unsupervised  in  nature  and  predefines  the
neighborhood  parameters,  LSPP  takes  special  consideration  of class  information  to  guide  the procedure
of graph  construction,  which  effectively  avoids  the  difficulty  of neighborhood  parameter  selection  and
shows  more  valuable  discriminatory  information  for classification  tasks.  To  evaluate  the  performance  of
LSPP, we  conduct  extensive  experiments  on  three  face  databases,  i.e. Yale,  FERET  and  AR  face  datasets.
The  results  corroborate  that  LSPP  delivered  promising  performance  compared  with  other  competing
methods  such  as PCA,  LDA,  LPP,  Supervised  LPP,  LDP,  SLPP  and  MFA.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Recently, the appearance-based face recognition methods have
aroused considerable interests in image processing and computer
vision fields. Generally, these approaches treat each face image of
size p × q as a point in p × q dimensional image space. In practice,
however, these p × q-dimensional spaces are too large to allow
robust and fast recognition. Dimensionality reduction (DR) is an
effective approach to deal with this problem. Over the past few
decades, a variety of dimensionality reduction techniques including
linear and nonlinear methods, supervised and unsupervised meth-
ods have been well developed. Among them, principal component
analysis (PCA) [1] and linear discriminant analysis (LDA) [2] are two
representative linear approaches.

PCA and LDA have been successfully applied to face recognition
[3–5]. PCA seeks to project the original data into a low-dimensional
subspace, which is spanned by the eigenvectors associated with the
largest eigenvalues of the sample covariance matrix. PCA is guaran-
teed to produce a compact representation of the input data in the
sense of minimizing mean squared error (MSE). However, PCA does
not take the class information into account and thus may be not
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reliable for classification task. Different from PCA, which has noth-
ing to do with the class information, LDA takes full consideration
of class labels of the input data. LDA aims to maximize between-
class scatter and simultaneously minimize within-class scatter. It is
generally believed that the label information can improve the dis-
criminative ability of recognition algorithms. Thus LDA can enhance
class separability in comparison with PCA.

However, both PCA and LDA can see only the global Euclidean
structure of the original data. If data points reside on a nonlinear
sub-manifold, the two  methods may  fail to discover the intrin-
sic geometric structure of the data. In order to characterize those
nonlinear data, several manifold learning methods with local lin-
ear but global nonlinear transformation are put forward, such as
locally linear embedding (LLE) [6], Isometric mapping (ISOMAP) [7],
and Laplacian Eigenmap [8]. These techniques do yield impressive
visualization results on some benchmark data such as handwritten
digits and facial images, whereas their implicit maps are defined
only on the training data. Therefore, they might be unsuitable for
feature extraction for pattern classification tasks. To overcome this
limitation, He et al. extend Laplacian Eigenmap to its linearized ver-
sion, i.e., locality preserving projections (LPP) [9–12] for an explicit
map. LPP is also known as a linear graph embedding method by
building a graph incorporating neighborhood information of the
data set to preserve the local structure in the low dimensional
space.

To improve the discriminantive ability of LPP, some supervised
LPP methods [13–18] by combining locality and label information

http://dx.doi.org/10.1016/j.aeue.2015.08.009
1434-8411/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.aeue.2015.08.009
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aeue.2015.08.009&domain=pdf
mailto:huangpu3355@163.com
mailto:huangpu@njupt.edu.cn
dx.doi.org/10.1016/j.aeue.2015.08.009


P. Huang, G. Gao / Int. J. Electron. Commun. (AEÜ) 69 (2015) 1724–1732 1725

have been derived. However, the recognition capability for LPP and
its supervised versions is limited due to that it is modeled based
on a characterization of ‘locality’. If the pattern needs to be clas-
sified resides in multi-manifolds and two or more modes have a
common axis, then the locality preserving algorithms of manifold
learning may  result in overlapped embeddings belonging to dif-
ferent classes, which deteriorates the discrimination performance.
To address such a problem, Yang et al. [19] proposed an unsu-
pervised discriminant projection (UDP) method, which considers
to minimize the local structure and simultaneously maximize the
non-local structure. In addition, a number of methods [20–32],
which combine the locality preserving technique and the linear dis-
criminant analysis, have been developed to deal with this problem.

Furthermore, LPP suffers from the problem of neighborhood
parameter selection. Since the neighborhood relationship is usu-
ally measured by an artificially constructed adjacent graph, graph
construction has become an important issue. One of the most
popular graph construction manners is based on the k nearest-
neighbor. Once an adjacent graph is constructed, the edge weights
are assigned by various strategies such as heat kernel or 0–1 way.
Unfortunately, such an adjacent graph is artificially constructed in
advance, thus it does not necessarily uncover the intrinsic local
geometric structure of the samples. To make things worse, the per-
formance of LPP is seriously sensitive to the neighborhood size k.
More recently, several proposed LPP methods [33,34] have shown
to be insensitive to k. On the other hand, some researches focus
on how to construct the adjacent graph to avoid the selection of
the neighborhood size k. Sparsity preserving projections (SPP) [35]
aims to preserve the sparse reconstructive relationship of samples,
which is achieved by constructing the adjacent graph by mini-
mizing a L1 regularization-related objective function. Instead of
predefining a same neighborhood size k for all samples, sample-
dependent LPP (SLPP) [36] constructs the graph based on samples
in question to determine the neighbors of each sample and simi-
larities between sample pairs. However, like traditional LPP, when
SLPP is applied to face recognition, it has several limitations such
as the ignorance of class label information.

In this paper, a novel supervised dimensionality reduction
method based on the idea of SLPP, namely local similarity preser-
ving projections (LSPP) is proposed for face recognition. The novelty
of LSPP over SLPP mainly comes from two aspects which are help-
ful for classification tasks: (1) the predefined similarities between
two nodes can be adjusted according to their class information and
show several good properties, and (2) the designed neighborhood
decision rule can adaptively select the neighbors of each sample
and guarantee that same-class samples are able to fall into the sim-
ilarity neighborhood of a sample, which makes the algorithm more
discriminative for classification.

The reminder of this paper is organized as follows. Section 2
gives a brief review of LPP and SLPP. Section 3 describes the pro-
posed method LSPP. Section 4 explores theoretical connections of
LSPP to some existing linear projection methods. Section 5 shows
the experimental results and analysis, followed by the conclusions
in Section 6.

2. Outline of LPP and SLPP

Given a set of n training data points X = [x1, . . .,  xn], xi ∈ RN, which
belong to C classes X1, . . .,  XC. The generic form of linear dimen-
sionality reduction is to project the high-dimensional data xi into a
low-dimensional space by a transformation matrix A ∈ RN×d (d < N)
as: yi = ATxi. For the convenience of the following discussion, we
denote a ∈ RN as the transformation vector. For the given data set
X, a graph G = {V, W,  E} can be constructed, where V is the set of all
data points in X, E is the set of edges connecting data points, and W

is an adjacency matrix with weights characterizing the likelihood
of point pairs.

2.1. LPP

LPP aims to find a projection that minimizes the local structure
of the data in the transformed space. To fulfill such an objective,
the criterion function of LPP can be formulated as:

JLPP = 1
2

arg min
a

∑
ij

(yi − yj)
2Wij (1)

where yi = aTxi is the one-dimensional representation of xi, and
W ∈ RN×N is a similarity matrix. A possible way  of defining W is as
follows:

Wij =

⎧⎪⎨
⎪⎩

exp

(
−
∥∥xi − xj

∥∥2

2p2

)
, if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise

(2)

where ‖•‖ is the Euclidean norm, Nk(xi) represents the set of k
nearest neighbors of xi, and p is the width parameter of the heat
kernel.

By simple algebra formulation, the objective function can be
reduced to

JLPP = 1
2

arg min
a

∑
ij

(aTxi − aTxj)
2
Wij

= arg min
a

aTX(D − W)XT a

= arg min
a

aTXLXTa

(3)

where L ∈ RN×N is the Laplacian matrix, D ∈ RN×N is a diagonal matrix
whose entries are column (or row, since W is symmetric) sum of

W: Dii =
∑

j

Wij .

To remove an arbitrary scaling in the embedding, a constant
aTXDXTa = 1 is imposed. Then the minimization problem in Eq. (3)
becomes

JLPP = arg min
aTXDXTa=1

aTXLXTa (4)

The transformation vector a that minimize the projection is
given by the minimum eigenvalue solution to the generalized
eigenvalue problem:

XLXTa = �XDXTa (5)

2.2. SLPP

Different from LPP which uses the k nearest-neighbor strategy to
determine neighborhood of samples, SLPP first utilizes an inequal-
ity with respect to the similarities between point pairs to extract
neighbors of each sample, and if one sample is determined as a
neighbor of another one, then the predefined similarity weights
are assigned to connect the two  data points. The weight matrix Ws

of SLPP is defined by:

Ws
ij =

⎧⎪⎨
⎪⎩

Ss
ij
, if Ss

ij
>

1
n

n∑
k=1

Ss
ik

0, otherwise

(6)

where Ss
ij

= exp
{

− d(xi,xj)

2t2

}
defines the similarity function,

d(xi, xj) =
∥∥xi − xj

∥∥2
/

n∑
k=1

∥∥xi − xk

∥∥2
is the distance between xi and
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